Back
 ENG  Vol.11 No.8 , August 2019
Effects of Outdoor Thermal Environment upon the Human Responses
Abstract: In a summer outdoor space, the influence of short-wave length solar radiation on the human body is strongly apparent, heat is retained in the body, and the risk of heat disorders such as heat stroke increases. To avoid this, it is essential to seek shade to avoid the influence of short-wave length solar radiation. In addition, natural ground surfaces such as green spaces and water surfaces are useful in reducing the air temperature. It is indispensable to consider climate mitigation effect of outdoor space. The purpose of this study is to clarify the influence of the thermal environment of an outdoor space on the human body in rural and suburban regions where paddy fields remain. Subject experiments were conducted to examine the relationship between the thermal environment evaluation index enhanced conduction-corrected modified effective temperature (ETFe) in an outdoor space and the physiological and psychological responses of the human body. Experiment sites were selected with consideration for the natural ground surface such as bare ground where the surface is gravel or soil; paved ground such as concrete, asphalt or blocks; green areas covered in plants; and water surfaces, as well as the sky factor due to buildings or trees etc. and the proportion of the solid angle of components of greenery and water etc. comprising the solid angle of the total celestial sphere. A ground surface feature with a high heat capacity may promote sensation of hot and deteriorate the thermal sensation. A landscape of thick vegetation with a high green factor may have a strong feeling of confinement, which can make it somewhat hot and somewhat uncomfortable thermal environment due to the sense of stagnation. Compared with the urban environment, it is conceivable that the difference in the perceptual environment, whereby it is subconsciously assumed to be a comfortable thermal environment, had an effect in the rural and suburban regional environment, resulting in an ETFe lower than the upper limit of comfort in a summer urban environment.
Cite this paper: Kurazumi, Y. , Kondo, E. , Fukagawa, K. , Yamato, Y. , Tobita, K. and Tsuchikawa, T. (2019) Effects of Outdoor Thermal Environment upon the Human Responses. Engineering, 11, 475-503. doi: 10.4236/eng.2019.118034.
References

[1]   Humphreys, M. (1976) Field Studies of Thermal Comfort Compared and Applied. Building Services Engineer, 44, 5-27.

[2]   Brager, G.S. and deDear, R.J. (1998) Thermal Adaptation in the Build Environment: A Literature Review. Energy and Buildings, 27, 83-96.
https://doi.org/10.1016/S0378-7788(97)00053-4

[3]   Nikolopoulou, M., Baker, N. and Steemers, K. (2001) Thermal Comfort in Outdoor Urban Spaces, Understanding the Human Parameter. Solar Energy, 70, 227-235.
https://doi.org/10.1016/S0038-092X(00)00093-1

[4]   de Dear, R.J. and Brager, G.S. (2002) Thermal Comfort in Naturally Ventilated Buildings, Revisions to ASHRAE Standard 55. Energy and Buildings, 34, 549-561.
https://doi.org/10.1016/S0378-7788(02)00005-1

[5]   Nikolopoulou, M. and Steemers, K. (2003) Thermal Comfort and Psychological Adaptation as a Guide for Designing Urban Spaces. Energy and Buildings, 35, 95-101.
https://doi.org/10.1016/S0378-7788(02)00084-1

[6]   Knez, I. and Thorsson, S. (2006) Influence of Culture and Environmental Attitude on Thermal, Emotional and Perceptual Evaluations of a Square. International Journal of Biometeorology, 50, 258-268.
https://doi.org/10.1007/s00484-006-0024-0

[7]   Nikolopoulou, M. and Lykoudis, S. (2006) Thermal Comfort in Outdoor Urban Spaces: Analysis across Different European Countries. Building and Environment, 41, 1455-1470.
https://doi.org/10.1016/j.buildenv.2005.05.031

[8]   Kántor, N. and Unger, J. (2011) Benefits and Opportunities of Adopting GIS in Thermal Comfort Studies in Resting Places: An Urban Park as an Example. Landscape and Urban Planning, 98, 36-46.
https://doi.org/10.1016/j.landurbplan.2010.07.008

[9]   Kurazumi, Y., Tsuchikawa, T., Matsubara, N., Kondo, E. and Horikoshi, T. (2011) Evaluation of Enhanced Conduction-Corrected Modified Effective Temperature ETFe as the Outdoor Thermal Environment Evaluation Index. Energy and Buildings, 43, 2925-2937.
https://doi.org/10.1016/j.enbuild.2011.07.019

[10]   Kurazumi, Y., Tsuchikawa, T., Kondo, E., Ishii, J., Fukagawa, K., Yamato, Y., Tobita, K., Ando, Y., Matsubara, N. and Horikoshi, T. (2012) Thermal Comfort Zone in Outdoor Environment. Journal of Human and Living Environment, 19, 115-127.

[11]   Kurazumi, Y., Ishii, J., Kondo, E., Fukagawa, K., Bolashikov, Z.D., Sakoi, T., Tsuchikawa, T., Matsubara, N. and Horikoshi, T. (2014) The Influence of Outdoor Thermal Environment on Young Japanese Female. International Journal of Biometeorologyogy, 58, 963-974.
https://doi.org/10.1007/s00484-013-0681-8

[12]   Kurazumi, Y., Fukagawa, K., Yamato, Y., Tobita, K., Kondo, E., Tsuchikawa, T., Horikoshi, T. and Matsubara, N. (2011) Enhanced Conduction-Corrected Modified Effective Temperature as the Outdoor Thermal Environment Evaluation Index upon the Human Body. Building and Environment, 46, 12-21.
https://doi.org/10.1016/j.buildenv.2010.06.012

[13]   Givoni, B., Noguchi, M., Saaroni, H., Pochter, O., Yaacov, Y., Feller, N. and Becker, S. (2003) Outdoor Comfort Research Issues. Energy and Buildings, 35, 77-86.
https://doi.org/10.1016/S0378-7788(02)00082-8

[14]   Oliveira, S. and Andrade, H. (2007) An Initial Assessment of the Bioclimatic Comfort in an Outdoor Public Space in Lisbon. International Journal of Biometeorologyogy, 52, 69-84.
https://doi.org/10.1007/s00484-007-0100-0

[15]   Eliasson, I., Knez, I., Westerberg, U., Thorsson, S. and Lindberg, F. (2007) Climate and Behaviour in a Nordic City. Landscape and Urban Planning, 82, 72-84.
https://doi.org/10.1016/j.landurbplan.2007.01.020

[16]   Ishii, J., Horikoshi, T., Kurazumi, Y., Nagano, K. and Fukagawa, K. (2008) A Field Survey of Thermal Comfort in Outdoor Space. 18th International Congress of Biometeorology, Tokyo, 22-26 September 2008, 1-4.

[17]   Kurazumi, Y., Kondo, E., Ishii, J., Sakoi, T., Fukagawa, K., Bolashikov, Z.D., Tsuchikawa, T., Matsubara, N. and Horikoshi, T. (2013) Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment. Journal of Environmental and Public Health, 2013, Article ID: 418742.
https://doi.org/10.1155/2013/418742

[18]   Kurazumi, Y., Ishii, J., Fukagawa, K. and Aruninta, A. (2015) The Influence of Tropical Urban Climate upon the Human Body. International Joint-Conference of SENVAR-iNTA-AVAN, Johor, 24-26 November 2015, 105-114.

[19]   Kurazumi, Y., Ishii, J., Fukagawa, K., Kondo, E. and Aruninta, A. (2016) Ethnic Differences in Thermal Responses between Thai and Japanese Females in Tropical Urban Climate. American Journal of Climate Change, 5, 52-68.
https://doi.org/10.4236/ajcc.2016.51007

[20]   Kurazumi, Y., Ishii, J., Fukagawa, K., Kondo, E., Nyilas, A. and Aruninta, A. (2017) Seasonal Differences of Psychological and Physiological Responses in Tropical Urban Climate. Health, 9, 896-920.
https://doi.org/10.4236/health.2017.96064

[21]   Murakawa, S., Sekine, T., Narita, K. and Nishina, D. (1988) Study on the Effect of River on Thermal Environment in Urban Area. Journal of Architecture, Planning and Environmental Engineering, 393, 25-34.
https://doi.org/10.3130/aijax.393.0_25

[22]   Murakawa, S., Sekine, T., Narita, K., Nishina, D. and Senda, K. (1988) Study on the Effect of River on Thermal Environment in Urban Area (Part 2). Journal of Architecture, Planning and Environmental Engineering, 415, 9-19.

[23]   Gao, W., Miura, S. and Ojima, T. (1994) Site Survey on Formation of Thermal Cool Island Due to Park and Inner River in Koto-Ku, Tokyo, Thermal Effects of the Open Space with Green Area on the Urban Environment Part II. Journal of Architecture, Planning and Environmental Engineering, 456, 75-83.
https://doi.org/10.3130/aija.59.75_1

[24]   Hashimto, T. and Horikoshi, T. (2003) The Effects of Shonai and Shinkawa Rivers Running around the Outskirts of Nagoya as “Wind Trail” of the Sea Breeze on the Urban Thermal Environment. Journal of Environmental Engineering, 571, 55-62.
https://doi.org/10.3130/aije.68.55_2

[25]   Kiyota, T., Taniguchi, A., Kiyota, N. and Nakamura, Y. (2006) The Study on Countermeasures against the Heat Island Phenomenon in the Urban Area: Part 1 The Characteristics of Air Temperature in the Urban Area of Hiroshima among Calm, Sea Breeze and Land Breeze. Journal of Environmental Engineering, 602, 69-75.
https://doi.org/10.3130/aije.71.69_1

[26]   Sasaki, K., Junimura, Y., Mochida, A., Watanabe, H. and Yoshino, H. (2007) Field Measurements of Regional Climate in a Provincial Coastal City along the Pacific in Tohoku Region in Summer, Influence of Wind Condition, Such as Yamase, and Green Coverage Ratio on Air Temperature. Journal of Environmental Engineering, 613, 99-85.
https://doi.org/10.3130/aije.72.79_1

[27]   Ishii, A., Katayama, T., Nishida, M., Hayashi, T., Shiozuki, Y., Tutsumi, J., Kitayama, H, Takayama, K., Murooka, H. and Ooguro, M. (1989) Thermal Environment in the Urban Area around the Park with a Large Pond, Comparison of When Water Filing and When Water Pumped out for Cleaning the Bed. Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan, D Environmental Engineering, 1087-1088.

[28]   Fukagawa, K., Shimazawa, T., Muranaka, S., Koshikawa, Y. and Ando, M. (2006) A Study of the Differences on the Formation of Temperature among Urban Areas, Rural Areas, and around Irrigation Ponds in a Developing City. Journal of Environmental Engineering, 605, 95-102.
https://doi.org/10.3130/aije.71.95_2

[29]   Fukagawa, K., Murakawa, S., Nishida, D. and Shimazawa, T. (2008) Formation of the Temperature in Summer beside Agricultural Irrigation Ponds Located in Urban Area. Journal of Environmental Engineering, 626, 503-510.
https://doi.org/10.3130/aije.73.503

[30]   Nishida, K., Mitsuyasu, M., Yoshida, S. and Shirozawa, S. (2017) Relationship between Water Depth and Water and Soil Temperature in a Paddy Field during Rice Ripening Period. Irrigation, Drainage and Rural Engineering Journal, 305, 253-263.

[31]   World Medical Association (2018) WMA Declaration of Helsinki—Ethical Principles for Medical Research Involving Human Subjects.
https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/

[32]   Kurazumi, Y., Horikoshi, T., Tsuchikawa, T. and Matsubara, N. (1994) The Body Surface Area of Japanese. Japanese Journal of Biometeorology, 31, 5-29.

[33]   Kurazumi, Y., Tsuchikawa, T., Yamato, Y., Kakutani, K., Matsubara, N. and Horikoshi, T. (2003) The Posture and Effective Thermal Convection Area Factor of the Human Body. Japanese Journal of Biometeorology, 40, 3-13.

[34]   Hanada, K., Mihira, K. and Ohhata, K. (1981) Studies on the Thermal Resistance of Women’s Underweares. Journal of the Japan Research Association for Textile End-Use, 22, 430-437.

[35]   Hanada, K., Mihira, K. and Sato, Y. (1983) Studies on the Thermal Resistance of Men’s Underweares. Journal of the Japan Research Association for Textile End-Use, 24, 363-369.

[36]   Horikoshi, T. and Kobayashi, Y. (1985) Corrected Humid Operative Temperature as an Index of Combined Influences of Thermal Conditions upon the Human Body. Journal of Architecture, Planning and Environmental Engineering, 355, 12-19.
https://doi.org/10.3130/aijax.355.0_12

[37]   Horikoshi, T., Kobayashi, Y. and Tsuchikawa, T. (1991) Indices of Combined and Independent Effect of Thermal Environmental Variable upon the Human Body. ASHRAE Transactions, 97, 228-238.

[38]   Kurazumi, Y., Tsuchikawa, T., Torii, T., Kakutani, K., Matsubara, N. and Horikoshi, T. (2004) Weighting Coefficients for Calculating Mean Skin Temperature When Considering Convective Heat Transfer Areas. Journal of the Human-Environmental System, 7, 19-28.
https://doi.org/10.1618/jhes.7.19

[39]   Kurazumi, Y., Matsubara, N., Furukawa, N., Fujiwara, M., Ue, A., Ueki, Y., Nagai, H. and Yamamoto, S. (1998) Japanese Weighting Coefficients for Calculating Mean Skin Temperature in Relation to Posture. Japanese Journal of Biometeorology, 35, 121-132.

[40]   Kurazumi, Y., Tsuchikawa, T., Kakutani, K., Torii, T., Matsubara, N. and Horikoshi, T. (2003) Evaluation of the Calculation Formula for the Body Surface Area of the Human Body. Japanese Journal of Biometeorology, 39, 101-106.

[41]   Kurazumi, Y., Tsuchikawa, T., Matsubara, N. and Horikoshi, T. (2008) Effect of Posture on the Heat Transfer Areas of the Human Body. Building and Environment, 43, 1555-1565.
https://doi.org/10.1016/j.buildenv.2007.09.001

[42]   Miyamoto, S., Horikoshi, T. and Hirokawa, Y. (1998) Projected Area Factors of the Human Body at Standing Posture under Different Clothing Conditions. Journal of Architecture, Planning and Environmental Engineering, 513, 47-52.
https://doi.org/10.3130/aija.63.47_4

[43]   Kuwabara, K., Mochida, T., Kondo, M. and Matsunaga, K. (2003) Measurement of Man’s Convective Heat Transfer Coefficient by Using a Thermal Manikin in the Middle Wind Velocity Region. Journal of Human and Living Environment, 8, 27-32.

[44]   Hendler, E., Crosbie, R. and Hardy, J.D. (1958) Measurement of Heating of the Skin during Exposure to Infrared Radiation. Journal of Applied Physiology, 12, 177-185.
https://doi.org/10.1152/jappl.1958.12.2.177

[45]   VDI (2008) VDI 3787-2, Environmental Meteorology—Methods for the Human Biometeorological Evaluation of Climate and Air Quality for Urban and Regional Planning at Regional Level—Part 1: Climate. Beuth, Berlin.

[46]   Watanabe, S., Horikoshi, T. and Tomita, A. (2010) Measurement of Solar Radiation Absorptance of Clothed Human Body in Outdoor. Japanese Journal of Biometeorology, 47, 165-173.

[47]   Elam, R., Goodwin, D.W. and Lloyd Williams, K. (1963) Optical Properties of the Human Epidermis. Nature, 198, 1001-1002.
https://doi.org/10.1038/1981001a0

[48]   Kurazumi, Y., Sakoi, T., Tsuchikawa, T., Fukagawa, K., Bolashikov, Z.D. and Horikoshi, T. (2014) Behavioral Thermoregulation Model for Evaluation of Outdoor Thermal Environment. Journal of Ergonomics, 4, 1-14.
https://doi.org/10.4172/2165-7556.1000125

[49]   Kurazumi, Y., Nakamura, R. and Matsubara, N. (2000) Effect of Different Postures on the Resting Metabolic Rate of Young Japanese at Operative Temperature of 28 °C. Japanese Journal of Biometeorology, 37, 27-37.

[50]   Horikoshi, T., Kurazumi, Y., Hirayama, K., Tsuchikawa, T. and Kobayashi, Y. (1989) Indication of the Effect of Asymmetric Thermal Radiation of the Human Physiological and Psychological Responses. The Second World Congress on Heating, Ventilating, Refrigerating and Air Conditioning, Sarajevo, 27 August-1 September 1989, 188-193.

[51]   Kurazumi, Y., Horikoshi, T., Hirayama, K., Tsuchikawa, T. and Kobayashi, Y. (1993) The Influence of Asymmetric and Uneven Thermal Radiation Environments upon the Human Body, in the Case of Constant Operative Temperature. Journal of Architecture, Planning and Environmental Engineering, 447, 17-26.
https://doi.org/10.3130/aijax.447.0_17

[52]   Kurazumi, Y., Saito, K. and Horikoshi, T. (1994) The Influence of Asymmetric Thermal Radiation Environments upon the Human Body, in the Case of Constant Operative Temperature and Right and Left, Back and Forth Asymmetry. Japanese Journal of Biometeorology, 31, 75-84.

[53]   Kurazumi, Y., Matsubara, N., Tsuchikawa, T., Kondo, E., Ishii, J., Fukagawa, K., Ando, Y., Yamato, Y., Tobita, K. and Horikoshi, T. (2011) Psychological Effects of the Environmental Stimuli on Thermal Sense in Outdoor Spaces. Japanese Journal of Biometeorology, 48, 129-144.

[54]   Kurazumi, Y., Fukagawa, K., Kondo, E., Yamato, Y. and Tobita, K. (2015) The Influence of Solar Radiation upon the Human Body. The 15th Science Council of Asia Conference and International Symposium, Siem Reap City, 15-16 May 2015, 154-158.

[55]   Fukagawa, K., Kurazumi, Y., Yamato, Y., Tobita, K., Hase, H., Han, S., Oishi, H. and Cao, Z. (2010) The Effect of Visual Stimulus on Thermal Comfort, Analysis of the Visual Factor by Experiment. The 7th International Cost Engineering Council World Congress & The 14th Pacific Association of Quantity Surveyors Congress, Singapore, 23-27 July 2010, 1-10.

[56]   Kurazumi, Y., Fukagawa, K., Kondo, E. and Sakoi, T. (2014) Effects of Visual Stimuli upon Thermal Sense under Air Conditioning in Summer. Journal of Ergonomics, 4, 1-7.

[57]   Kurazumi, Y., Kondo, E., Fukagawa, K., Hashimoto, R., Nyilas, A., Sakoi, T. and Tsuchikawa, T. (2017) The Influence of Foliage Plants on Psychological and Physiological Responses. Health, 9, 601-621.
https://doi.org/10.4236/health.2017.94043

[58]   Kurazumi, Y., Hashimoto, R., Nyilas, A., Yamashita, K., Fukagawa, K., Kondo, E., Yamato, Y., Tobita, K. and Tsuchikawa, T. (2018) Effect of Visual Stimuli of Indoor Floor Plants upon the Human Responses. Health, 10, 928-948.
https://doi.org/10.4236/health.2018.107069

[59]   Kurazumi, Y., Fukagawa, K., Sakoi, T., Aruninta, A. and Yamashita, K. (2018) The Non-Uniform and Asymmetric Thermal Radiation upon the Human Physiological Responses in Outdoor Environment. International Journal of Environmental Research and Public Health, 10, 1321-1341.
https://doi.org/10.20944/preprints201807.0274.v1

[60]   Tsuchikawa, T., Horikoshi, T., Kurazumi, Y., Hirayama, K., Kondo, E. and Kobayashi, Y. (1991) Effects of Thermal Radiation on Human Body in Standing Posture. Journal of Architecture, Planning and Environmental Engineering, 422, 27-35.
https://doi.org/10.3130/aijax.422.0_27

[61]   Höppe, P. (2002) Different Aspects of Assessing Indoor and Outdoor Thermal Comfort. Energy and Buildings, 34, 661-665.
https://doi.org/10.1016/S0378-7788(02)00017-8

[62]   Spagnolo, J. and de Dear, R.J. (2003) A Field Study of Thermal Comfort in Outdoor and Semi-Outdoor Environments in Subtropical Sydney Australia. Building and Environment, 38, 721-738.
https://doi.org/10.1016/S0360-1323(02)00209-3

[63]   Nakano, J. and Tanabe, S. (2004) Thermal Comfort and Adaptation in Semi-Outdoor Environments. ASHRAE Transactions, 110, 543-553.

[64]   Ahmed, K.S. (2003) Comfort in Urban Spaces: Defining the Boundaries of Outdoor Thermal Comfort for the Tropical Urban Environments. Energy and Buildings, 35, 103-110.
https://doi.org/10.1016/S0378-7788(02)00085-3

[65]   Lin, T.P. and Matzarakis, A. (2008) Tourism Climate and Thermal Comfort in Sun Moon Lake, Taiwan. International Journal of Biometeorologyogy, 52, 281-290.
https://doi.org/10.1007/s00484-007-0122-7

[66]   Cheng, M., Lo, J. and Chen, S. (2011) Investigation of the Effect of Climatic Adaptation on Users’ Thermal Comfort Requirement in Outdoor Space. International Journal of the Physical Sciences, 6, 6042-6052.

 
 
Top