JAMP  Vol.7 No.8 , August 2019
Method of Construction of Material That Work on All the Range of Wavelengths or Frequency or Energy of Photon
Abstract: The main objective of this research work is to decrease work function of any given element or compound or material. To decrease the work function of the given material we have to decrease the bandwidth between conduct band and valance band. Because according to definition of work function, the amount of energy that required the remove the electron from valance band of an atom and it is also called ionization energy. These all energies depend upon the band width that is greater than the band width greater energy required to remove the electron from the surface, and less than the band width and lesser amount of energy required to remove the electron from of materials. In this work we are trying to give an theoretical model or relation, how to decrease the work function of a material by applying external pressure on atoms and doping of the material that has screening or shielding effects. With the help of this model we can increase the efficiency of material used in solar cell that is cell work for all range of frequencies and by construction material bases on this we can increase the efficiency of solar cell or any type of material working solar cell principle.
Cite this paper: Pageni, R. , Dhobi, S. , Panthi, N. , Tamang, S. and Shrestha, S. (2019) Method of Construction of Material That Work on All the Range of Wavelengths or Frequency or Energy of Photon. Journal of Applied Mathematics and Physics, 7, 1826-1839. doi: 10.4236/jamp.2019.78125.

[1]   Boyd, R.W. (2003) Novel Photonic Materials for Advanced Imaging Applications. Journal of the Korean Physical Society, 43, 603-605.

[2]   Lopez, C. (2003) Material Aspect for Photoinc Crystal. Advance Material, 15, 1679-1684.

[3]   Academy of Finland Research Programmes (2013) Foresight: Materials for Photonics.

[4]   Yablonovitch, E. (1987) Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58, 2059-2061.

[5]   Pendry, J.B. (1999) Photonic Gap Materials. Current Science, 76, 1311-1136.

[6]   Hoff, A.M. and Ruzyllo, J. (2006) Electronics and Photonics. In: The Electrochemical Society Interface, Springer, Berlin, 36-37.

[7]   Meade, R.D., Brommer, K.D., Rappe, A.M., and Joannopoulos, J.D. (1992) Existence of a Photonic Band Gap in Two Dimensions. Applied Physics Letter, 61, 495-496.

[8]   Pouya, C., Overvelde, J.T.B., Kolle, M., Aizenberg, J., Bertoldi, K., Weaver, J.C. and Vukusic, P. (2015) Characterization of a Mechanically Tunable Gyroid Photonic Crystal Inspired by the Butterfly Parides sesostris. Advanced Optical Materials, 4, 99-105.

[9]   Zhang, J., MacDonald, K.F. and Zheludev, N.I. (2013) Nonlinear Dielectric Optomechanical Metamaterials. Light: Science & Applications, 2, e96.

[10]   Feng, K., Streyer, W., Zhong, Y., Hoffman, A.J. and Wasserman, D. (2015) Photonic Materials, Structures and Devices for Reststrahlen Optics. Optics Express, 23, A1418.

[11]   Stevenson, T.R., Adams, J.S., Hsieh, W., Moseley, S.H., Travers, D.E., Uyen, K., Wollack, E.J. and Zmuidzinas, J. (2009) Superconducting Films for Absorber-Coupled MKID Detectors for Sub-Millimeter and Far-Infrared Astronomy. IEEE Transactions on Applied Superconductivity, 19, 561-564.

[12]   Huang, H.W., Lin, C.H., Huang, Z.K., Lee, K.Y., Yu, C.C. and Kuo, H.C. (2010) Double Photonic Quasi-Crystal Structure Effect on GaN-Based Vertical-Injection Light-Emitting Diodes. Japanese Journal of Applied Physics, 49, Article ID: 022101.

[13]   Pernice, W.H.P., Xiong, C., Schuck, C. and Tang, H.X. (2012) High-q Aluminum Nitride Photonic Crystal Nanobeam Cavities. Applied Physics Letters, 100, Article ID: 091105.

[14]   Scrymgeour, D., Malkova, N., Kim, S. and Gopalan, V. (2003) Electro-Optic Control of the Superprism Effect in Photonic Crystals. Applied Physics Letters, 82, 3176-3178.

[15]   Davis, S.R., Rommel, S.D., Farca, G. and Anderson, M.H. (2008) A New Generation of Previously Unrealizable Photonic Devices as Enabled by a Unique Electro-Optic Waveguide Architecture. SPIE, Vol. 7050, 8-9.

[16]   Muller, N., Haberko, J., Marichy, C. and Scheffold, F. (2013) Silicon Hyper Uniform Disordered Photonic Materials with a Pronounced Gap in the Shortwave Infrared. Advanced Optical Materials, 2, 115-119.

[17]   Dahal, R., Li, J., Majety, S., Pantha, B.N., Cao, X.K., Lin, J.Y. and Jiang, H.X. (2011) Epitaxially Grown Semiconducting Hexagonal Boron Nitride as a Deep Ultraviolet Photonic Material. Applied Physics Letters, 98, Article ID: 211110.

[18]   Xia, F., Mueller, T., Lin, Y.M., Garcia, A.V. and Avouris, P. (2009) Ultrafast Graphene Photodetector. Nature Nanotechnology, 4, 839-843.

[19]   Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, Q., Chen, X. and Zhang, H. (2011) Single-Layer MoS2 Phototransistors. ACS Nano, 6, 74-80.

[20]   Sanchez, O.L., Lembke, D., Kayci, M., Radenovic, A. and Kis, A. (2013) Ultrasensitive Photodetectors Based on Monolayer MoS2. Nature Nanotechonology, 8, 497-499.

[21]   Dowling, J.P. and Bowden, C.M. (1994) Anomalous Index of Refraction in Photonic Bandgap Materials. Journal of Modern Optics, 41, 345-351.

[22]   Florescu, M., Torquato, S. and Steinhardt, P.J. (2009) Designer Disordered Materials with Large. Complete Photonic Band Gaps. Proceedings of the National Academy of Sciences Proceedings of the National Academy of Sciences, 106, 20658-20663.

[23]   Origlio, G., Girard, S., Boscaino, R., Boukenter, A., Cannas, M. and Ouerdane, Y. (2009) Optical and Photonic Material Hardness for Energetic Environments. UVX, 2008, 127-132.

[24]   Bogdanov, S., Shalaginov, M.Y., Boltasseva, A. and Shalaev, V.M. (2017) Material Platforms for Integrated Quantum Photonics. Optical Materials Express, 7, 111-132.

[25]   Boitier, F., Orieux, A., Autebert, C., Lemaitre, A., Galopin, E., Manquest, C., Sirtori, C., Favero, I., Leo, G. and Ducci, S. (2014) Electrically Injected Photon-Pair Source at Room Temperature. Physical Review Letters, 112, Article ID: 183901.

[26]   Arcari, M., Söllner, I., Javadi, A., Hansen, S.L., Mahmoodian, S., Liu, J., Thyrrestrup, H., Lee, E.H., Song, J.D., Stobbe, S. and Lodahl, P. (2014) Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide. Physical Review Letters, 113, Article ID: 093603. Salter, C.L., Stevenson, R.M., Farrer, I., Nicoll, C.A., Ritchie, D.A. and Shields, A.J. (2010) An Entangled-Light Emitting Diode. Nature, 465, 594-597.

[27]   Nilsson, J., Stevenson, R.M., Chan, K.H.A., Szymanska, J.S., Lucamarini, M., Ward, M.B., Bennett, A.J., Salter, C.L., Farrer, I., Ritchie, D.A. and Shields, A.J. (2013) Quantum Teleportation Using a Light Emitting Diode. Nature Photonics, 7, 311-315.

[28]   Wang, Y., Ouyang, G., Wang, L.L., Tang, L.M., Tang, D.S. and Sun, C.Q. (2008) Size and Composition Induced Band-Gap Change of Nano Structured Compound of II-VI Semiconductors. Chemical Physics Letters, 463, 383-386.

[29]   Lang, P.F. and Smith, B.C. (2003) Ionization Energies of Atoms and Atomic Ions. Journal of Chemical Education, 80, 938-946.

[30]   Grebe, G. and Schulz, H.J. (2013) Luminescence of Cr2+ Centres and Related Optical Interactions Involving Crystal Field Levels of Chromium Ions in Zinc Sulfide. Verlag Zeitschrift für Naturforschung, 29, 1808-1812.

[31]   Taber, K.S. (2003) Understanding Ionisation Energy: Physical, Chemical and Alternative Conceptions. Chemistry Education: Research and Practice, 4, 155-156.

[32]   Gross, J. (2011) Mass Spectrometry. 2nd Edition, Springer-Verlag, Berlin, Heidelberg, 26-29.

[33]   McDonald, K.T. (2009) Radiation Pressure of a Monochromatic Plane Wave on a Flat Mirror. Joseph Henry Laboratories, Princeton University, Princeton, 1-6.