Back
 JAMP  Vol.7 No.8 , August 2019
Stability of High-Order Staggered-Grid Schemes for 3D Elastic Wave Equation in Heterogeneous Media
Abstract: In this paper, we firstly derive the stability conditions of high-order staggered-grid schemes for the three-dimensional (3D) elastic wave equation in heterogeneous media based on the energy method. Moreover, the plane wave analysis yields a sufficient and necessary stability condition by the von Neumann criterion in homogeneous case. Numerical computations for 3D wave simulation with point source excitation are given.
Cite this paper: Joardar, A. , Zhang, W. (2019) Stability of High-Order Staggered-Grid Schemes for 3D Elastic Wave Equation in Heterogeneous Media. Journal of Applied Mathematics and Physics, 7, 1755-1774. doi: 10.4236/jamp.2019.78120.
References

[1]   De Basabe, J.D. and Sen, M.K. (2010) Stability of the High-Order Finite Elements for Acoustic or Elastic Wave Propagation with High-Order Time Stepping. Geophysical Journal International, 181, 577-590.
https://doi.org/10.1111/j.1365-246X.2010.04536.x

[2]   Bécache, E., Joly, P. and Tsogka, C. (2002) A New Family of Mixed Finite Elements for the Linear Elastodynamic Problem. SIAM Journal on Numerical Analysis, 39, 2109-2132.
https://doi.org/10.1137/S0036142999359189

[3]   Cohen, G.C. (2002) Higher-Order Numerical Methods for Transient Wave Equations. Springer, New York.
https://doi.org/10.1007/978-3-662-04823-8

[4]   Zhang, W., Chung, E.T. and Wang, C. (2014) Stability for Imposing Absorbing Boundary Conditions in the Finite Element Simulation of Acoustic Wave Propagation. Journal of Computational Mathematics, 32, 1-20.
https://doi.org/10.4208/jcm.1310-m3942

[5]   Komatitsch, D., Martin, R., Tromp, J., Taylor, M.A. and Wingate, B.A. (2001) Wave Propagation in 2-D Elastic Media Using a Spectral Element Method with Triangles and Quadrangles. Journal of Computational Acoustics, 9, 703-718.
https://doi.org/10.1142/S0218396X01000796

[6]   Chung, E.T. and Engquist, B. (2006) Optimal Discontinuous Galerkin Methods for Wave Propagation. SIAM Journal on Numerical Analysis, 44, 2131-2158.
https://doi.org/10.1137/050641193

[7]   Dumbser, M., Käser, M. and Toto, E.F. (2007) An Arbitrary High-Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes-V. Local Time Stepping and p-Adaptivity. Geophysical Journal International, 171, 695-717.
https://doi.org/10.1111/j.1365-246X.2007.03427.x

[8]   Dumbser, M., Käser, M. and de la Puente, J. (2007) Arbitrary High-Order Finite Volume Schemes for Seismic Wave Propagation on Unstructured Meshes in 2D and 3D. Geophysical Journal International, 171, 665-694.
https://doi.org/10.1111/j.1365-246X.2007.03421.x

[9]   Zhang, W., Zhuang, Y. and Chung, E.T. (2007) A New Spectral Finite Volume Method for Elastic Wave Modelling on Unstructured Meshes. Geophysical Journal International, 206, 292-307.
https://doi.org/10.1093/gji/ggw148

[10]   Alford, R.M., Kelly, K.R. and Boore, D.M. (1974) Accuracy of Finite-Difference Modeling of the Acoustic Wave Equation. Geophysics, 39, 834-842.
https://doi.org/10.1190/1.1440470

[11]   Bayliss, A., Jordan, K.E., Lemesurier, B. and Turkel, E. (1986) A Fourth Accurate Finite Difference Scheme for the Computation of Elastic Waves. Bulletin of the Seismological Society of America, 76, 1115-1132.

[12]   Virieux, J. (1986) P-SV Wave Propagation in Heterogeneous Media: Velocity Stress Formulation Finite Difference Method. Geophysics, 51, 889-901.
https://doi.org/10.1190/1.1441605

[13]   Zingg, D.W., Lomax, H. and Jurgens, H. (1996) High-Accuracy Finite-Difference Schemes for Linear Wave Propagation. SIAM Journal on Scientific Computing, 17, 328-346.
https://doi.org/10.1137/S1064827599350320

[14]   Cohen, G. and Joly, P. (1996) Construction and Analysis of Fourth-Order Finite Difference Schemes for the Acoustic Wave Equation in Nonhomogeneous Media. SIAM Journal on Numerical Analysis, 33, 1266-1302.
https://doi.org/10.1137/S0036142993246445

[15]   Sei, A. (1995) A Family of Numerical Schemes for the Computation of Elastic Waves. SIAM Journal on Scientific Computing, 16, 898-916.
https://doi.org/10.1137/0916052

[16]   Nilsson, S., Petersson, N.A., Sjögreen, B. and Kreiss, H.-O. (2007) Stable Difference Approximations for the Elastic Wave Equation in Second Order Formulation. SIAM Journal on Numerical Analysis, 45, 1902-1936.
https://doi.org/10.1137/060663520

[17]   Zhang, W. (2019) A New Family of Fourth-Order Locally One-Dimensional Schemes for the 3D Elastic Wave Equation. Journal of Computational and Applied Mathematics, 348, 246-260.
https://doi.org/10.1016/j.cam.2018.08.056

[18]   Fornberg, B. (1988) Generation of Finite Difference Formulas on Arbitrarily Spaced Grids. Mathematics of Computation, 51, 699-706.
https://doi.org/10.1090/S0025-5718-1988-0935077-0

[19]   Fornberg, B. (1990) High-Order Finite Differences and the Pseudospectral Method on Staggered Grids. SIAM Journal on Numerical Analysis, 27, 904-918.
https://doi.org/10.1137/0727052

[20]   Fornberg, B. and Ghrist, M. (1999) Spatial Finite Difference Approximations for Wave-Type Equations. SIAM Journal on Numerical Analysis, 37, 105-130.
https://doi.org/10.1137/S0036142998335881

[21]   Thomas, J.W. (1995) Numerical Partial Differential Equations: Finite Difference Methods. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4899-7278-1

 
 
Top