[1] Frish, U., & Parisi, G. (1985). On the Singularity Structure of Fully Developed Turbulence. In M. Ghil, R. Benzi, & G. Parisi (Eds.), Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (pp. 84-88). New York: North-Holland.
[2] Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M., & Gray, W. M. (2001). The Recent Increase in Atlantic Hurricane Activity: Causes and Implications. Science, 293, 474-479.
https://doi.org/10.1126/science.1060040
[3] Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., & Mann, M. E. (2005). A Signature of Persistent Natural Thermohaline Circulation Cycles in Observed Climate. Geophysical Research Letters, 32, L20708.
https://doi.org/10.1029/2005GL024233
[4] Knight, J. R., Folland, C. K., & Scaife, A. A. (2006). Climate Impacts of the Atlantic Multidecadal Oscillation. Geophysical Research Letters, 33, L17706.
https://doi.org/10.1029/2006GL026242
[5] Kosaka, Y., & Xie, S. P. (2013). Recent Global-Warming Hiatustied to Equatorial Pacific Surface Cooling. Nature, 501, 403-407.
https://doi.org/10.1038/nature12534
[6] Maruyama, F. (2018). Relation between Niño3.4 and SOI by Wavelet-Based Multifractal Analysis. The International Journal of Engineering and Science, 7, 67-74.
[7] Maruyama, F., Kai, K., & Morimoto, H. (2015). Wavelet-Based Multifractal Analysis on Climatic Regime Shifts. Journal of the Meteorological Society of Japan, 93, 331-341.
https://doi.org/10.2151/jmsj.2015-018
[8] Medhang, I., Stolpe, M. B., Fischer, E. M., & Knutti, R. (2017). Reconciling Controversies about the “Global Warming Hiatus”. Nature, 545, 41-47.
https://doi.org/10.1038/nature22315
[9] Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A., & Trenberth, K. E. (2011). Model-Based Evidence of Deep-Ocean Heat Uptake during Surface-Temperature Hiatus Periods. Nature Climate Change, 1, 360-364.
https://doi.org/10.1038/nclimate1229
[10] Muzy, J. F., Bacry, E., & Arneodo, A. (1991). Wavelets and Multifractal Formalism for Singular Signals: Application to Turbulence Data. Physical Review Letters, 67, 3515-3518.
https://doi.org/10.1103/PhysRevLett.67.3515
[11] Nye, J. A., Baker, M. R., Bell, R., Kenny, A., Kilbourne, K. H., Friedland, K. D., Martino, E., Stachura, M. M., Houtan, K. S. V., & Wood, R. (2014). Ecosystem Effects of the Atlantic Multidecadal Oscillation. Journal of Marine Systems, 133, 103-116.
https://doi.org/10.1016/j.jmarsys.2013.02.006
[12] Seip, K. L., & Wang, H. (2018). The Hatus in Global Warming and Interactions between the El Nino and the Pacific Decadal Oscillation: Comparing Observations and Modeling Results. Climate, 6, 72.
https://doi.org/10.3390/cli6030072
[13] Sutton, R. T., & Hodson, D. L. R. (2005). Atlantic Ocean forcing of North American and European Summer Climate. Science, 309, 115-118.
https://doi.org/10.1126/science.1109496
[14] Svensson, C., Olsson, J., & Berndtsson, R. (1996). Multifractal Properties of Daily Rainfall in Two Different Climates. Water Resources Research, 32, 2463-2472.
https://doi.org/10.1029/96WR01099
[15] Tang, C., Chen, D., Crosby, B. T., Piechota, T. C., & Wheaton, J. M. (2014). Is the PDO or AMO the Climate Driver of Soil Moisture in the Salmon River Basin, Idaho? Global and Planetary Change, 120, 16-23.
https://doi.org/10.1016/j.gloplacha.2014.05.008
[16] Tollefson, J. (2014). The Case of the Missing Heat. Nature, 505, 276-278.
https://doi.org/10.1038/505276a