Back
 AiM  Vol.9 No.8 , August 2019
Herpesvirus of Turkeys (Meleagridis Herpesvirus 1) Encodes a Functional MicroRNA-221 Homolog with High Sequence Conservation
Abstract: Herpesviruses account for most of the known virus-encoded miRNAs. Herpesvirus of turkey (HVT), a non-pathogenic avian herpesvirus used as an avian vaccine and viral vector, encodes 28 mature miRNAs. This included HVT-miR-H14-3p that showed almost identical sequence to gga-miR-221, suggesting that it is pirated from the avian host. Although the functional homolog between the two miRNAs has been proposed based on the sequence similarity, the direct experimental evidence is still lacking. In this report, we provide the evidence for the first time that HVT-miR-H14-3p is indeed a gga-miR-221 homolog through modulating the expression of p27Kip1, a known target of miR-221 by binding to its 3’UTR. We also created an HVT-miR-H14-3p deletion virus and show that this miRNA is not essential for in vitro replication.
Cite this paper: Yao, Y. , Ding, C. , Nair, V. (2019) Herpesvirus of Turkeys (Meleagridis Herpesvirus 1) Encodes a Functional MicroRNA-221 Homolog with High Sequence Conservation. Advances in Microbiology, 9, 728-736. doi: 10.4236/aim.2019.98044.
References

[1]   Hwang, H.W. and Mendell, J.T. (2006) Micrornas in Cell Proliferation, Cell Death, and Tumorigenesis. British Journal of Cancer, 94, 776-780.
https://doi.org/10.1038/sj.bjc.6603023

[2]   Fu, L.L., Wen, X., Bao, J.K. and Liu, B. (2012) Microrna-Modulated Autophagic Signaling Networks in Cancer. The international Journal of Biochemistry & Cell Biology, 44, 733-736.
https://doi.org/10.1016/j.biocel.2012.02.004

[3]   Cullen, B.R. (2009) Viral and Cellular Messenger RNA Targets of Viral Micrornas. Nature, 457, 421-425.
https://doi.org/10.1038/nature07757

[4]   Gottwein, E. and Cullen, B.R. (2008) Viral and Cellular Micrornas as Determinants of Viral Pathogenesis and Immunity. Cell Host & Microbe, 3, 375-387.
https://doi.org/10.1016/j.chom.2008.05.002

[5]   Nair, V. and Zavolan, M. (2006) Virus-Encoded Micrornas: Novel Regulators of Gene Expression. Trends in Microbiology, 14, 169-175.
https://doi.org/10.1016/j.tim.2006.02.007

[6]   Gottwein, E., Mukherjee, N., Sachse, C., Frenzel, C., Majoros, W.H., Chi, J.T., Braich, R., Manoharan, M., Soutschek, J., Ohler, U., et al. (2007) A Viral Microrna Functions as an Orthologue of Cellular Mir-155. Nature, 450, 1096-1099.
https://doi.org/10.1038/nature05992

[7]   Skalsky, R.L., Samols, M.A., Plaisance, K.B., Boss, I.W., Riva, A., Lopez, M.C., Baker, H.V. and Renne, R. (2007) Kaposi’s Sarcoma-Associated Herpesvirus Encodes an Ortholog of Mir-155. Journal of Virology, 81, 12836-12845.
https://doi.org/10.1128/JVI.01804-07

[8]   Zhao, Y., Yao, Y., Xu, H., Lambeth, L., Smith, L.P., Kgosana, L., Wang, X. and Nair, V. (2009) A Functional Microrna-155 Ortholog Encoded by the Oncogenic Marek’s Disease Virus. Journal of Virology, 83, 489-492.
https://doi.org/10.1128/JVI.01166-08

[9]   Kincaid, R.P., Chen, Y., Cox, J.E., Rethwilm, A. and Sullivan, C.S. (2014) Noncanonical Microrna (Mirna) Biogenesis Gives Rise to Retroviral Mimics of Lymphoproliferative and Immunosuppressive Host Mirnas. mBio, 5, e00074.
https://doi.org/10.1128/mBio.00074-14

[10]   Faraoni, I., Antonetti, F.R., Cardone, J. and Bonmassar, E. (2009) Mir-155 Gene: A Typical Multifunctional Microrna. Biochimica et Biophysica Acta, 1792, 497-505.
https://doi.org/10.1016/j.bbadis.2009.02.013

[11]   Gottwein, E., Corcoran, D.L., Mukherjee, N., Skalsky, R.L., Hafner, M., Nusbaum, J.D., Shamulailatpam, P., Love, C.L., Dave, S.S., Tuschl, T., et al. (2011) Viral Microrna Targetome of Kshv-Infected Primary Effusion Lymphoma Cell Lines. Cell Host & Microbe, 10, 515-526.
https://doi.org/10.1016/j.chom.2011.09.012

[12]   Manzano, M., Shamulailatpam, P., Raja, A.N. and Gottwein, E. (2013) Kaposi’s Sarcoma-Associated Herpesvirus Encodes a Mimic of Cellular Mir-23. Journal of Virology, 87, 11821-11830.
https://doi.org/10.1128/JVI.01692-13

[13]   Kincaid, R.P., Burke, J.M. and Sul-livan, C.S. (2012) RNA Virus Microrna That Mimics a b-Cell Oncomir. Proceedings of the National Academy of Sciences of the United States of America, 109, 3077-3082.
https://doi.org/10.1073/pnas.1116107109

[14]   Waidner, L.A., Morgan, R.W., Anderson, A.S., Bernberg, E.L., Kamboj, S., Garcia, M., Riblet, S.M., Ouyang, M., Isaacs, G.K., Markis, M., et al. (2009) Micrornas of Gallid and Meleagrid Herpesviruses Show Generally Conserved Genomic Locations and Are Virus-Specific. Virology, 388, 128-136.
https://doi.org/10.1016/j.virol.2009.02.043

[15]   Yao, Y., Zhao, Y., Xu, H., Smith, L.P., Lawrie, C.H., Sewer, A., Zavolan, M. and Nair, V. (2007) Marek’s Disease Virus Type 2 (Mdv-2)-Encoded Micrornas Show No Sequence Conservation with Those Encoded by Mdv-1. Journal of Virology, 81, 7164-7170.
https://doi.org/10.1128/JVI.00112-07

[16]   Yao, Y., Zhao, Y., Smith, L.P., Watson, M. and Nair, V. (2009) Novel Micrornas Encoded by Herpesvirus of Turkeys (hvt): Evidence of Mirna Evolution by Duplication. Journal of Virology, 83, 6969-6973.
https://doi.org/10.1128/JVI.00322-09

[17]   Yao, Y., Zhao, Y., Xu, H., Smith, L.P., Lawrie, C.H., Watson, M. and Nair, V. (2008) Microrna Profile of Marek’s Disease Virus-Transformed t-Cell Line Msb-1: Predominance of Vi-rus-Encoded Micrornas. Journal of Virology, 82, 4007-4015.
https://doi.org/10.1128/JVI.02659-07

[18]   Yao, Y., Zhao, Y., Smith, L.P., Watson, M. and Nair, V. (2009) Novel Micrornas (Mirnas) Encoded by Herpesvirus of Turkeys: Evidence of Mirna Evolution by Duplication. Journal of Virology, 83, 6969-6973.
https://doi.org/10.1128/JVI.00322-09

[19]   Liu, N., Okamura, K., Tyler, D.M., Phillips, M.D., Chung, W.J. and Lai, E.C. (2008) The Evolution and Functional Diversification of Animal Microrna Genes. Cell Research, 18, 985-996.
https://doi.org/10.1038/cr.2008.278

[20]   Medina, R., Zaidi, S.K., Liu, C.G., Stein, J.L., van Wijnen, A.J., Croce, C.M. and Stein, G.S. (2008) Micrornas 221 and 222 Bypass Quiescence and Compromise Cell Survival. Cancer Research, 68, 2773-2780.
https://doi.org/10.1158/0008-5472.CAN-07-6754

[21]   Song, J., Ouyang, Y., Che, J., Li, X., Zhao, Y., Yang, K., Zhao, X., Chen, Y., Fan, C. and Yuan, W. (2017) Potential Value of Mir-221/222 as Diagnostic, Prognostic, and Therapeutic Biomarkers for Diseases. Frontiers in Immunology, 8, 56.
https://doi.org/10.3389/fimmu.2017.00056

[22]   Fornari, F., Gramantieri, L., Ferracin, M., Veronese, A., Sabbioni, S., Calin, G.A., Grazi, G.L., Giovannini, C., Croce, C.M., Bolondi, L., et al. (2008) Mir-221 Controls cdkn1c/p57 and cdkn1b/p27 Expression in Human Hepatocellular Carcinoma. Oncogene, 27, 5651-5661.
https://doi.org/10.1038/onc.2008.178

[23]   Galardi, S., Mercatelli, N., Giorda, E., Massalini, S., Frajese, G.V., Ciafre, S.A. and Farace, M.G. (2007) Mir-221 and Mir-222 Expression Affects the Proliferation Potential of Human Prostate Carcinoma Cell Lines by Targeting p27kip1. The Journal of Biological Chemistry, 282, 23716-23724.
https://doi.org/10.1074/jbc.M701805200

[24]   Le Sage, C., Nagel, R., Egan, D.A., Schrier, M., Mesman, E., Mangiola, A., Anile, C., Maira, G., Mercatelli, N., Ciafre, S.A., et al. (2007) Regulation of the p27(kip1) Tumor Suppressor by Mir-221 and Mir-222 Promotes Cancer Cell Proliferation. The EMBO Journal, 26, 3699-3708.
https://doi.org/10.1038/sj.emboj.7601790

[25]   Visone, R., Russo, L., Pallante, P., De Martino, I., Ferraro, A., Leone, V., Borbone, E., Petrocca, F., Alder, H., Croce, C.M., et al. (2007) Micrornas (Mir)-221 and Mir-222, Both Overexpressed in Human Thyroid Papillary Carcinomas, Regulate p27kip1 Protein Levels and Cell Cycle. Endocrine-Related Cancer, 14, 791-798.
https://doi.org/10.1677/ERC-07-0129

[26]   Liu, X., Cheng, Y., Zhang, S., Lin, Y., Yang, J. and Zhang, C. (2009) A Necessary Role of Mir-221 and Mir-222 in Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia. Circulation Research, 104, 476-487.
https://doi.org/10.1161/CIRCRESAHA.108.185363

[27]   Lambeth, L.S., Yao, Y., Smith, L.P., Zhao, Y. and Nair, V.K. (2009) Micrornas 221 and 222 Target p27kip1 in Marek’s Disease Virus-Transformed Tumour Cell Line Msb-1. Journal of General Virology, 90, 1164-1171.
https://doi.org/10.1099/vir.0.007831-0

[28]   Yao, Y., Zhao, Y., Smith, L.P., Lawrie, C.H., Saunders, N.J., Watson, M. and Nair, V. (2009) Differential Expression of Micrornas in Marek’s Disease Virus-Transformed t-Lymphoma Cell Lines. Journal of General Virology, 90, 1551-1559.
https://doi.org/10.1099/vir.0.009902-0

[29]   Baigent, S.J., Petherbridge, L.J., Smith, L.P., Zhao, Y., Chesters, P.M. and Nair, V.K. (2006) Herpesvirus of Turkey Reconstituted from Bacterial Artificial Chromosome Clones Induces Protection against Marek’s Disease. Journal of General Virology, 87, 769-776.
https://doi.org/10.1099/vir.0.81498-0

[30]   Warming, S., Costantino, N., Court, D.L., Jenkins, N.A. and Copeland, N.G. (2005) Simple and Highly Efficient BAC Recombineering Using Galk Selection. Nucleic Acids Research, 33, e36.
https://doi.org/10.1093/nar/gni035

[31]   Yu, D., Ellis, H.M., Lee, E.C., Jenkins, N.A., Copeland, N.G. and Court, D.L. (2000) An Efficient Recombination System for Chromosome Engineering in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 97, 5978-5983.
https://doi.org/10.1073/pnas.100127597

[32]   Bartel, D.P. (2009) Micrornas: Target Recognition and Regulatory Functions. Cell, 136, 215-233.
https://doi.org/10.1016/j.cell.2009.01.002

 
 
Top