[1] Barcucci, E., Del Lungo, A., Nivat, M. and Pinzani, R. (1996) Reconstructing Convex Polyominoes from Horizontal and Vertical Projections. Theoretical Computer Science, 155, 321-347.
https://doi.org/10.1016/0304-3975(94)00293-2
[2] Brunetti, S. and Daurat, A. (2005) Random Generation of Q-Convex Sets. Theoretical Computer Science, 347, 393-414.
https://doi.org/10.1016/j.tcs.2005.06.033
[3] Castiglione, G., Restivo, A. and Vaglica, R. (2006) A Reconstruction Algorithm for L-Convex Polyominoes. Theoretical Computer Science, 356, 58-72.
http://www.sciencedirect.com
https://doi.org/10.1016/j.tcs.2006.01.045
[4] Castiglione, G., Frosini, A., Munarini, E., Restivo, A. and Rinaldi, S. (2007) Combinatorial Aspects of L-Convex Polyominoes. European Journal of Combinatorics, 28, 1724-1741.
[5] Castiglione, G. and Restivo, A. (2003) Reconstruction of L-Convex Polyominoes. Electronic Notes in Discrete Mathematics, Vol. 12, Elsevier Science, Amsterdam.
https://doi.org/10.1016/S1571-0653(04)00494-9
[6] Duchi, E., Rinaldi, S. and Schaeffer, G. (2008) The Number of Z-Convex Polyominoes. Advances in Applied Mathematics, 40, 54-72.
https://doi.org/10.1016/j.aam.2006.07.004
[7] Tawbe, K. and Vuillon, L. (2011) 2L-Convex Polyominoes: Geometrical Aspects. Contributions to Discrete Mathematics, North America, 6, 1-25.
[8] Chrobak, M. and Dürr, C. (1999) Reconstructing hv-Convex Polyominoes from Orthogonal Projections. Information Processing Letters, 69, 283-289.
https://doi.org/10.1016/S0020-0190(99)00025-3
[9] Tawbe, K., Ghandour, N. and Atwi, A. (2019) 2-Convex Polyominoes: Non-Empty Corners. Open Journal of Discrete Mathematics, 9, 33-51.
[10] Tawbe, K. and Vuillon, L. (2011) 2L-Convex Polyominoes: Tomographical Aspects. Contributions to Discrete Mathematics, 8, 1-12.
[11] Even, S., Itai, A. and Shamir, A. (1976) On the Complexity of Timetable and Multicommodity Flow Problems. SIAM Journal on Computing, 5, 691-703.
https://doi.org/10.1137/0205048
[12] Aspvall, B., Plass, M.F. and Tarjan, R.E. (1979) A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas. Information Processing Letters, 8, 121-123.
https://doi.org/10.1016/0020-0190(79)90002-4