Back
 JHEPGC  Vol.5 No.3 , July 2019
Ground State Energy Density of the Quantum Harmonic Oscillator
Show more
Abstract: The total energy of the ground state of the quantum harmonic oscillator is obtained with minimal assumptions. The vacuum energy density of the universe is derived and a cutoff frequency is obtained for the upper bound of the quantum harmonic oscillator.
Cite this paper: Oliveira, F. (2019) Ground State Energy Density of the Quantum Harmonic Oscillator. Journal of High Energy Physics, Gravitation and Cosmology, 5, 935-940. doi: 10.4236/jhepgc.2019.53049.
References

[1]   Oliveira, F.J. (2016) First Instance of Cosmic Time and the Vacuum Density. arXiv:genph/1608.06525v1

[2]   Carmeli, M. (2002) Cosmological Special Relativity. 2nd Edition, World Scienti_c, Singapore.
https://doi.org/10.1142/9789812777553

[3]   Einstein, A. (1905) Does the Inertia of a Body Depend on Its Energy Content? Annalen der Physik, 17, 891; English translation in: The Principle of Relativity. Dover, New York, 1923: 35.

[4]   Planck, M. (1899) Naturlische Masseinheiten. Der Koniglich Preussischen Akademie Der Wissenschaften, 479-480.

[5]   Hubble, E. (1929) A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proceedings of the National Academy of Sciences of the United States of America, 15, 168-173.
https://doi.org/10.1073/pnas.15.3.168

[6]   Bonvin, V., Courbin, F., Suyu, S.H., Marshall, P.J., Rusu, C.E., Sluse, D., Tewes, M., Wong, K.C., Collett, T., Fassnacht, C.D., Treu, T., Auger, M.W., Hilbert, S., Koopmans, L.V.E., Meylan, G., Rumbaugh, N., Sonnenfeld, A. and Spiniello, C. (2016) H0LiCOW|V. New COSMOGRAIL Time Delays of HE 0435-1223: H0 to 3.8% Precision from Strong Lensing in a Flat _CDM Model. Monthly Notices of the Royal Astronomical Society, 465, 4914-4930. arXiv:1607.01790
https://doi.org/10.1093/mnras/stw3006

[7]   Rugh, S.E. and Zinkernagel, H. (2002) The Quantum Vacuum and the Cosmological Constant Problem. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 33, 663-705. arXiv:hepth/0012253
https://doi.org/10.1016/S1355-2198(02)00033-3

[8]   Marsh, G.E. (2007) The Vacuum and the Cosmological Constant Problem. arXiv:0711.0220

[9]   Heisenberg, W. (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift f üur Physik, 43, 172-198.
https://doi.org/10.1007/BF01397280

[10]   Sato, K. and Suzuki, H. (1967) Analysis of Neutrino Burst from the Supernova 1987A in the Large Magellanic Cloud. Physical Review Letters, 58, 2722.
https://doi.org/10.1103/PhysRevLett.58.2722

[11]   Lobashev, V.M., Aseev, V.N., Belesev, A.I., Berlev, A.I., Geraskin, E.V., Golubev, A.A., Kazachenko, O.V., Kuznetsov, Yu.E., Ostroumov, R.P., Rivkis, L.A., Stern, B.E., Titov, N.A., Zadoroghny, C.V. and Zakharov, Yu.I. (2001) Direct Search for Neutrino Mass and Anomaly in the Tritium Beta-Spectrum: Status of \Troitsk Neutrino Mass" Experiment. Nuclear Physics B, 91, 280-286.
https://doi.org/10.1016/S0920-5632(00)00952-X

[12]   Goobar, A., Hannestad, S., M öortsell, E. and Tu, H. (2006) The Neutrino Mass Bound from WMAP 3 Year Data, the Baryon Acoustic Peak, the SNLS Supernovae and the Lyman-_ Forest. Journal of Cosmology and Astroparticle Physics, 6, 19. arXiv:astroph/0602155
https://doi.org/10.1088/1475-7516/2006/06/019

[13]   Planck Collaboration: Ade, P.A.R., Aghanim, N., Arnaud, M., et al. (2016) Planck 2015 Results XIII. Cosmological Parameters. Astronomy and Astrophysics, 594, A13. arXiv:astroph/1502.01589

[14]   Fahr, H.J. (2006) Cosmological Consequences of Scale-Related Comoving Masses for Cosmic Pressure, Mass, and Vacuum Energy Density. Foundations of Physics Letters, 19, 423-440.
https://doi.org/10.1007/s10702-006-0902-z

[15]   Weinberg, S. (1989) The Cosmological Constant Problem. Reviews of Modern Physics, 61, 1-23.
https://doi.org/10.1103/RevModPhys.61.1

[16]   Maia, M.D., Capistrano, A.J.S. and Monte, E.M. (2009) The Nature of the Cosmological Constant Problem. International Journal of Modern Physics A, 24, 1545-1548. arXiv:grqc/0905.3655
https://doi.org/10.1142/S0217751X09044978

[17]   Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Hogan, C.J., Jha, S., Kirshner, R.P., Leibundgut, B., Phillips, M.M., Reiss, D., Schmidt, B.P., Schommer, R.A., Smith, R.C., Spyromilio, J., Stubbs, C., Suntze_, N.B. and Tonry, J. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant.The Astronomical Journal, 116, 1009-1038. arXiv:astroph/9805201
https://doi.org/10.1086/300499

[18]   Sidharth, B.G. (2006) A Note on the Cosmic Neutrino Background and the Cosmological Constant. Foundations of Physics Letters, 19, 757-759.
https://doi.org/10.1007/s10702-006-1063-9

[19]   Sidharth, B.G. (2013) A Model for Neutrinos. International Journal of Theoretical Physics, 52, 4412-4415. arXiv:genph/0904.3639
https://doi.org/10.1007/s10773-013-1759-0

 
 
Top