AS  Vol.10 No.7 , July 2019
An Efficient Regeneration System for Native Orange (Citrus reticulata) through In-Vitro Culture Technique
Abstract: Citrus reticulata (Mandarin Orange), commonly known as “Sweet Orange”, is one of the most difficult plants to improve through traditional breeding approaches as it poses various biological limitations that greatly hinder the cultivar improvement. In the present study, using the fresh seed of native orange as explant, an efficient, reproducible, regeneration method was developed through in vitro organogenesis. Mature, healthy and dehusked seeds were treated with Murashige and Skoog, (MS) media containing 3% sucrose, 0.7% agar supplemented with different concentrations and combinations of phytohormones. The highest calli initiation (93.3% ± 0.5%) responses were observed on MS medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) at 3.0 mg/L followed by 2,4-D at 3.5 mg/L (86.7% ± 1.75%) in this experiment. Maximum shoot regeneration (86.7% ± 3.35%) responses were reported using MS medium supplemented with the combination of 6-benzylaminopurine (BAP) at 3.0 mg/L and 1-naphthaleneacetic acid (NAA) at 2.0 mg/L. MS medium supplemented with NAA at 1.0 mg/L showed the best rooting (80% ± 2.89%) response in comparison to (70% ± 5.20%) indole-3-butyric acid (IBA) at 1.0 mg/L. The regenerated plantlets were acclimatized in pots containing sterile garden soil mixture to examine their response in natural conditions.
Cite this paper: Khan, M. , Hoque, H. , Islam, M. , Ashrafuzzaman, M. and Prodhan, S. (2019) An Efficient Regeneration System for Native Orange (Citrus reticulata) through In-Vitro Culture Technique. Agricultural Sciences, 10, 975-984. doi: 10.4236/as.2019.107074.

[1]   Grosser, J.W. and Gmitter, F.G.J. (1990) Protoplast Fusion and citrus Improvement. In: Plant Breeding Reviews, Timber Press Inc., Portland, 339-374.

[2]   Hasan, M.N., Hasan, M.R., Foysal, S.H., Hoque, H., Khan, M.F., Bhuiyan, M.F.H. and Prodhan S.H. (2019) In Vitro Regeneration of citrus sinensis (L.) Osbeck from Mature Seed Derived Embryogenic Callus on Different Solid Basal Media. American Journal of Plant Sciences, 10, 285-297.

[3]   Hasan, M.R., Gupta, A., Hasan, M.N., Fahim, S.M., Rejwan, H.M., Shamim, M.A., Siddique, M.A.T. and Prodhan, S.H. (2016) Efficient Callus Initiation and Plantlet Regeneration of Citrus japonica Margarita. IOSR Journal of Pharmacy and Biological Sciences, 11, 72-78.

[4]   Prodhan, S.H., Hasan, M.N., Hoque, H., Alam, S.S., Hasan, M.R., Gupta, A., Khatun, M.U.S., Parvin, A. and Joy, Z.F. (2016) Development of an Efficient in Vitro Regeneration System for Endangered Wild Orange Citrus chrysocarpa L. International Journal of Sciences: Basic and Applied Research, 30, 187-196.

[5]   Kayim, M. and Koe, N.K. (2006) The Effects of Some Carbohydrates on Growth and Somatic Embryogenesis in Citrus Callus Culture. Scientia Horticulturae, 109, 29-34.

[6]   Vanamala, J., Leonardi, T., Patil, B.S., Taddeo, S.S., Murphy, M.E., Pike, L.M., Chapkin, R.S., Lupton, J.R. and Turner, N.D. (2006) Suppression of Colon Carcinogenesis by Bioactive Compounds in Grapefruit. Carcinogenesis, 27, 1257-1265.

[7]   Hidaka, T. and Omura, M. (1989) Control of Embryogenesis in Citrus Cell Culture Regeneration Protoplasts and Attempts to Callus Bank. Bulletin of the Fruit Tree Research Station, Series Okitsu, 16, 1-17.

[8]   Chandler, L.J., Gmitter, F.G. and Grosser, J.W. (1996) Somaclonal Variation in Sweet Orange a Tool for Cultivar Improvement. Proceedings of the International Society of Citriculture, 1, 203.

[9]   Kobayashi, S. (1992) The Production of Novel Cultivars of Fruit Trees Using Protoplast Fusion. Journal of Agricultural and Food Chemistry, 15, 16-20.

[10]   Deng, X.X., Yu, G.H. and Guo, W.W. (2000) Somatic Hybridization between Diploids and Allotetraploid Somatic Hybrids in Citrus. Proceedings of the 9th ISC Congress Sun City Resort, South Africa, 115-121.

[11]   Koltonow, A.M. (2002) Regeneration of West Indian Limes (Citrus aurantifolia) Containing Genes for Decreased Seed Set. Acta Horticulturae, 535, 151-157.

[12]   Greno, L.V., Navarro, N. and Vila, D. (1988) Influence of Virus and Virus-Like agents on the Development of Citrus Buds Cultured in Vitro. Plant Cell, Tissue and Organ Culture, 15, 113–124.

[13]   Mukhopadhyay, S., Raj, J., Sharma, B.C., Gurung, A., Sengupta, R.K. and Nath, P.S. (1997) Micropropagation of Darjeeling Orange (Citrus reticulata Blanco) by Shoot-Tip Grafting. Journal of Horticultural Science, 72, 493-499.

[14]   Raman, H., Gosal, S.S. and Brar, D.S. (1992) Plant Regeneration from Callus Cultures of Citrus Limon and C. Jambhiri. Crop Improvement, 19, 100-103.

[15]   Altaf, N., Khan, A.R., Ali, L. and Bhatti, I.A. (2008) Propagation of Rough Lemon (Citrus jambhiri Lush.) through in Vitro Culture and Adventitious Rooting in Cuttings. Electronic Journal of Environmental, Agricultural and Food Chemistry, 7, 3326-3333.

[16]   Savita, V., Virk, G.S. and Nagpal, A. (2010) Effect of Explant Type and Different plant Growth Regulators on Callus Induction and Plantlet Regeneration in Citrus jambhiri Lush. Environment & We: An International Journal of Science & Technology, 5, 97-106.

[17]   Pawelec, A.K., Pietrusiewicz, J. and Szczuka, E. (2015) In Vitro Regeneration Induced in Leaf Explants of Citrus limon L. Burm Cv. Primofiore. Acta Scientiarum Polonorum-Hortorum Cultus, 14, 143-153.

[18]   Tao, H., Shaolin, P., Gaofeng, D., Lanying, Z. and Gengguang, L. (2002) Plant Regeneration from Leaf-Derived Callus in Citrus grandis (Pummelo): Effects of Auxins in Callus Induction Medium. Plant Cell, Tissue and Organ Culture, 69, 141-146.

[19]   Beloualy, N. (1991) Plant Regeneration from Callus Culture of Three Citrus Rootstocks. Plant Cell, Tissue and Organ Culture, 24, 29-34.

[20]   Mukhtar, R., Khan, M.M., Rafiq, R., Shahid, A. and Khan, F.A. (2005) In Vitro Regeneration and somatic embryogenesis in (Citrus aurantifolia and Citrus sinensis). International Journal of Agriculture & Biology, 7, 518-520.

[21]   Oliveira, F.R.A., Oliveira, F.A., Guimarães, I.P., Medeiros, J.F., Oliveira, M.K.T., Freitas, A.V.L. and Medeiros, M.A. (2009) Emergency of Seedlings of Moringa oleifera Lam Irrigated with Water of Different Levels of Salinity. Bioscience Journal, 25, 66-74.

[22]   Parthasarathy, V.A., Barua, A., Nagaraju, V. and Parthasarathy, U. (2001) Quadratic Response of Citrus Species to Cytokinins and Comparative Efficacy on Morphogenetic Characters of In-Vitro Proliferated Shoots. Indian Journal of Horticulture, 58, 336-341.

[23]   Barlass, M. and Skene, K.G.M. (1982) In Vitro Plantlet Formation from Citrus Species and Hybrids. Scientia Horticulturae, 17, 333-341.

[24]   Azim, F., Rahman, M.M., Prodhan, S.H., Sikdar, S.U., Zobayer, N. and Ashrafuzzaman, M. (2011) Development of Efficient Callus Initiation of Malta (Citrus sinensis) through Tissue Culture. International Journal of Agricultural Research, Innovation and Technology, 1, 64-68.

[25]   Savita, S.B., Virk, G.S. and Nagpal, A.K. (2011) An Efficient Plant Regeneration Protocol from Callus Cultures of Citrus jambhiri Lush. Physiology and Molecular Biology of Plants, 17, 161-169.

[26]   Singh, S. and Rajam, M.V. (2009) Citrus Biotechnology: Achievements, Limitations and Future Directions. Physiology and Molecular Biology of Plants, 15, 3-22.

[27]   Costa, M., Otoni, W. and Moore, G. (2002) An Evaluation of Factors Affecting the Efficiency of Agrobacterium Mediated Transformation of Citrus paradisi (Macf.) and Production of Transgenic Plants Containing Carotenoid Biosynthetic Genes. Plant Cell Reports, 21, 365-373.

[28]   Chato, S.T. and Nudoung, S. (1998) Tissue Culture of Citrus reticulata Blanco CV. Shogun. and Gene Transformation by Agrobacteria. In: Proceedings of 1998 Abstracts IMT-GT UNITE Conference, Songkhla.