[1] Espinosa, G., Golzarri, J.I., Rickards, J. and Gammage, R.B. (1999) Distribution of Indoor Radon Levels in Mexico. Radiation Measurements, 31, 355-358.
[2] Espinosa, G., Golzarri, J.I. Bogard, J., Gaso, I., Ponciano, G., Mena, M. and Segovia, N. (2008) Indoor Radon Measurements in Mexico City. Radiation Measurements, 43, S431-S434.
https://doi.org/10.1016/j.radmeas.2008.03.039
[3] Somlai, J., Gorjánácz, Z., Várhegyi, A. and Kovács, T. (2006) Radon Concentration in Houses over a Closed Hungarian Uranium Mine. Science of the Total Environment, 367, 353-365.
[4] Tell, I., Bensryd, I., Rylander, L., Jönsson, G. and Daniel, E. (1994) Geochemistry and Ground Permeability as Determinants of Indoor Radon Concentrations in Southernmost Sweden. Applied Geochemistry, 9, 647-655.
https://doi.org/10.1016/0883-2927(94)90025-6
[5] Varley, N.R. and Flowers, A.G. (1998) The Influence of Geology on Radon Levels in S.W. England. Radiation Protection Dosimetry, 77, 171-176.
https://doi.org/10.1093/oxfordjournals.rpd.a032307
[6] Akbari, K. and Mahmoudi, J. (1012) Numerical Simulation of Radon Transport and Indoor Air Conditions Effects. International Journal of Scientific & Engineering Research, 3, 1-9.
[7] Akbari, K. and Mahmoudi, J. (2018) Simulation of Radon Mitigation in Residential Building with Ventilation.
https://pdfs.semanticscholar.org/9b44/fb43cb1719de58a4c01d2565eb58140a86c1.pdf
[8] Gyorfi, T. and Csige, I. (2011) Effect of Atmospheric Pressure Variations on the 222Rn Activity Concentration in the Air of a Wine Cellar. Journal of Radioanalytical and Nuclear Chemistry, 288, 229-232.
https://doi.org/10.1007/s10967-010-0947-0
[9] Urosevic, V., Nikezic, D. and Vulovic, S. (2008) A Theoretical Approach to Indoor Radon and Thoron Distribution. Journal of Environmental Radioactivity, 99, 1829-1833.
https://doi.org/10.1016/j.jenvrad.2008.07.010
[10] De With, G. and De Jong, P. (2011) Simulation of Thoron and Thoron Progeny Concentrations in the Indoor Environment. Journal of Building Physics, 35, 101-127.
https://doi.org/10.1177/1744259111398634
[11] Zhuo, W., Iida, T., Moriizumi, J., Aoyagi, T. and Takahashi, I. (2001) Simulation of the Concentrations and Distributions of Indoor Radon and Thoron. Radiation Protection Dosimetry, 93, 357-368.
https://doi.org/10.1093/oxfordjournals.rpd.a006448
[12] Denman, A.R., Groves-Kirkby, N.P., Groves-Kirkby, C.J., Crockett. R.G.M., Phillips, P.S. and Woolridge, A.C. (2007) Health Implications of Radon Distribution in Living Rooms and Bedrooms in U.K. Dwellings—A Case Study in Northamptonshire. Environment International, 33, 999-1011.
https://doi.org/10.1016/j.envint.2007.01.011
[13] UNAM (2018)
http://www.estadistica.unam.mx/numeralia/
[14] Espinosa, G., Golzarri, J.I., Jaso, I., Mena, M. and Segovia, N. (2013) An Intercomparison of Indoor Radon Data Using NTD and Different Dynamic Recording Systems. Radiation Measurements, 50, 112-115.
https://doi.org/10.1016/j.radmeas.2012.11.005
[15] Espinosa, G. (1994) Trazas Nucleares en Sólidos. Instituto de Física, Universidad Nacional Autónoma de México.
[16] Espinosa, G. and Gammage, R.B. (2003) A Representative Survey of Indoor Radon in the Sixteen Regions in Mexico City. Radiation Protection Dosimetry, 103, 73-76.
https://doi.org/10.1093/oxfordjournals.rpd.a006119
[17] Mazur, D., Janik, M., Loskiewicz, J., Olko, P. and Swakon, J. (1999) Measurements of Radon Concentration in Soil Gas by CR-39 Detectors. Radiation Measurements, 31, 295-300.
https://doi.org/10.1016/S1350-4487(99)00135-3
[18] Orlando, C., Orlando, P., Patrizii, L., Tommasino, L., Tonnarini, S., Trevisi R. and Viola, P. (2002) A Passive Radon Dosemeter Suitable for Workplaces. Radiation Protection Dosimetry, 102, 163-168.
https://doi.org/10.1093/oxfordjournals.rpd.a006085