[1] Royal Society (2008) Sustainable Biofuels: Prospects and Challenges. Royal Society, London.
[2] Cook, J.H., Beyea, J. and Keeler, K.H. (1991) Potential Impacts of Biomass Production in the United States on Biological Diversity. Annual Review of Energy and the Environment, 16, 401-431.
https://doi.org/10.1146/annurev.eg.16.110191.002153
[3] Eggers, J., Troltzsch, K., Falcucci, A., Maiorano, L., Verburg, P.H., Framstad, E., Louette, G., Maes, D., Nagy, S., Ozinga, W. and Delbaere, B. (2009) Is Biofuel Policy Harming Biodiversity in Europe? GCB Bioenergy, 1, 18-34.
https://doi.org/10.1111/j.1757-1707.2009.01002.x
[4] Groom, M.J., Gray, E.M. and Townsend, P.A. (2008) Biofuels and Biodiversity: Principles for Creating Better Policies for Biofuel Production. Conservation Biology, 22, 602-609.
https://doi.org/10.1111/j.1523-1739.2007.00879.x
[5] RCEP (2000) Twenty-Second Report: Energy-The Changing Climate. RCEP, London.
[6] Defra (2007) Planting and Growing Miscanthus: Best Practice Guidelines for applicants to Defra’s Energy Crops Scheme. Defra Publications, London.
[7] Defra (2013) Area of Crops Grown For Bioenergy in England and the UK: 2008-2011. Department for Environment, Food & Rural Affairs, England.
[8] Gaston, K.J. and Spicer, J.I. (2004) Biodiversity: An Introduction. Blackwell Publishing, Oxford.
[9] Magurran, A.E. (2004) Ecological Diversity and Its Measurement. 2nd Edition, Chapman & Hall, London.
[10] Feest, A. (2006) Establishing Baseline Indices for the Quality of the Biodiversity of Restored Habitats Using a Standardized Sampling Process. Restoration Ecology, 14, 112-122.
https://doi.org/10.1111/j.1526-100X.2006.00112.x
[11] Feest, A., Aldred, T.D. and Jedamzik, K. (2010) Biodiversity Quality: A Paradigm for Biodiversity. Ecological Indicators, 10, 1077-1082.
https://doi.org/10.1016/j.ecolind.2010.04.002
[12] Saint-Germain, M., Buddle, C.M., Larrivee, M., Mercado, A., Motchula, T., Reichert, E., Sackett, T.E., Sylvain, Z. and Webb, A. (2007) Should Biomass Be Considered More Frequently as a Currency in Terrestrial Arthropod Community Analyses? Journal of Applied Ecology, 44, 330-339.
https://doi.org/10.1111/j.1365-2664.2006.01269.x
[13] Ganihar, S.R. (1997) Biomass Estimates of Terrestrial Arthropods Based on Body Length. Journal of Biosciences, 22, 219-224.
https://doi.org/10.1007/BF02704734
[14] Luff, M.L. (2007) The Carabidae (Ground Beetles) of Britain and Ireland. In: Handbooks for the Identification of British Insects, 2nd Edition, Royal Entomological Society, London.
[15] Roberts, M.J. (1985) Atypidae to Theridiosomatidae. In: The Spiders of Great Britain and Ireland, Vol.1, Harley Books, Colchester.
[16] Roberts, M.J. (1987) Linyphiidae and Check List. In: The Spiders of Great Britain and Ireland, Vol. 2, Harley Books, Colchester.
[17] Hillyard, P.D. (2005) Harvestmen. Synopses of the British Fauna (New Series) No. 4. Field Studies Council, Shrewsbury.
[18] Feest, A., Eyre, M.D. and Aldred, T.D. (2011) Measuring Carabid Beetle Biodiversity Quality: An Example of Setting Baseline Biodiversity Indices. Current Trends in Ecology, 2, 11-23.
[19] Urbani, C.B. (1980) A Statistical Table for the Degree of Coexistence between Two Species. Oecologia, 44, 287-289.
https://doi.org/10.1007/BF00545229
[20] Rogers, L.E., Hinds, W.T. and Buschbom, R.L. (1976) A General Length vs. Weight Relationship for Insects. Annals of the Entomological Society of America, 69, 387-389.
https://doi.org/10.1093/aesa/69.2.387
[21] Jarosik, V. (1989) Mass vs Length Relationship for Carabid Beetles (Col, Carabidae). Pedobiologia, 33, 87-90.
[22] Lang, A., Krooβ, S. and Stumpf, H. (1997) Mass-Length Relationships of Epigeal Arthropod Predators in Arable Land (Araneae, Chilopoda, Coleoptera). Pedobiologia, 41, 329-333.
[23] Henschel, J., Mahsberg, D. and Stumpf, H. (1996) Mass-Length Relationships of Spiders and Harvestmen (Araneae and Opiliones). In: Mahnert, V., Ed., Proceedings of the XIIIth International Congress of Arachnology, Geneva, 265-268.
[24] Duffey, E. and Feest, A. (2009) A Comparative Ecological Study of the Spider (Araneae) Faunas of East Anglian Fens, England: Regional Differences and Conservation. Bulletin of the British Arachnological Society, 14, 317-333.
https://doi.org/10.13156/arac.2009.14.8.317
[25] Luff, M.L. (1998) Provisional Atlas of the Ground Beetles (Coleoptera, Carabidae) of Britain. Biological Records Centre, Huntingdon.
[26] Harvey, P.R., Nellist, D.R. and Telfer, M.G. (2002) Provisional Atlas of British Spiders (Arachnidae, Araneae), Volumes 1 and 2. Biological Records Centre, Huntingdon.
[27] Semere, T. and Slater, F. (2005) The Effects of Energy Grass Plantations on Biodiversity. A Preliminary Study. Department of Trade and Industry, London.
[28] Semere, T. and Slater, F.M. (2007) Invertebrate Populations in Miscanthus (Miscanthus × giganteus) and Reed Canary-Grass (Phalaris arundinacea) Fields. Biomass and Bioenergy, 31, 30-39.
https://doi.org/10.1016/j.biombioe.2006.07.002
[29] Christian, D.G., Riche, A.B. and Yates, N.E. (2008) Growth, Yield and Mineral Content of Miscanthus × giganteus Grown as a Biofuel for 14 Successive Harvests. Industrial Crops and Products, 28, 320-327.
https://doi.org/10.1016/j.indcrop.2008.02.009
[30] Semere, T. and Slater, F.M. (2007) Ground Flora, Small Mammal and Bird Species Diversity in Miscanthus (Miscanthus × giganteus) and Reed Canary-Grass (Phalaris arundinacea) Fields. Biomass & Bioenergy, 31, 20-29.
https://doi.org/10.1016/j.biombioe.2006.07.001
[31] Lee, M.S. and Albajes, R. (2016) Monitoring Carabid Indicators Could Reveal Environmental Impacts of Genetically Modified Maize. Agricultural and Forest Entomology, 18, 238-249.
https://doi.org/10.1111/afe.12156
[32] Chauvat, M., Perez, G., Hedde, M and Lamy, I. (2014) Establishment of Biomasss Crops on Metal Contaminated Soils Stimulates below Ground Fauna. Biomass and Bioenergy, 67, 207-211.
[33] Hedde, M., Bureau, F., Akpa-Vinceslas, M., Aubert, M. and Decaens, T. (2007) Beech Leaf Degradation in Laboratory Experiments: Effects of Eight Detritivorous Invertebrate Species. Applied Soil Ecology, 35, 291-301.
https://doi.org/10.1016/j.apsoil.2006.08.002
[34] Bourke, D., Stanley, D., O’Rourke, E., Thompson, R., Carnus, T., Dauber, J., Emmerson, M., Whelan, P., Hecq, F., Flynn, L. and Stout, J. (2014) Response of Farmland Biodiversity to the Introduction of Bioenergy Crops: Effects off Local Factors and Surrounding Landscape Context. Bioenergy, 6, 275-289.
https://doi.org/10.1111/gcbb.12089
[35] Haughton, A.J., Bond, A.J., Lovett, A.A., Dockerty, T., Sunnenberg, G., Clark, S.J., Bohan, D.A., Sage, R.B., Mallott, M.D., Mallott, V.E., Cunningham, M.D., Riche, A.B., Shield, I.F., Finch, J.W., Turner, M.M. and Karp, A. (2009) A Novel, Integrated Approach to Assessing Social, Economic and Environmental Implications of Changing Rural Land-Use: A Case Study of Perennial Biomass Crops. Journal of Applied Ecology, 46, 315-322.
https://doi.org/10.1111/j.1365-2664.2009.01623.x
[36] Pollard, E., Hall, M. and Bibby, T.J. (1986) Monitoring the Abundance of Butterflies. Research and Survey in Nature Conservation No. 2. Nature Conservancy Council, Peterborough.
[37] Fleishman, E. and Murphy, D.D. (2009) A Realistic Assessment of the Indicator Potential of Butterflies and Other Charismatic Taxonomic Groups. Conservation Biology, 23, 1109-1116.
https://doi.org/10.1111/j.1523-1739.2009.01246.x