Back
 AS  Vol.10 No.6 , June 2019
Modeling of the Leaf Area of Maytenus obtusifolia Mart. from Scanned Images
Abstract: The leaf has a vital role in the functions of the plant, being responsible for photosynthesis and gas exchange. Thus, the objective of this study was to fit a mathematical equation model to estimate the leaf area of Maytenus obtusifolia Mart. through the linear dimensions of the leaves. For that, six hundred and fifteen healthy leaves were collected from plants belonging to the Federal University of Espírito Santo, São Mateus Campus, in the municipality of São Mateus, located in the north of the State of Espírito Santo, Brazil. All leaves were digitized and the images processed using the ImageJ® software, obtaining the measurements of the maximum length of the main midrib (L), the maximum width of the leaf blade (W) and the real leaf area (RLA) of each sheet. Subsequently, the product of length and width multiplication (LW) was also obtained. 500 sheets were randomly separated for the generation of models of mathematical equations and their respective coefficient of determination (R2), where RLA was used as dependent variable as function of L, W or LW as independent variable. Based on the models generated, a 115 leaf sample was used for validation, where the L, W and LW values of this sample were replaced in the adjusted equations, thus obtaining the estimated leaf area (ELA). A comparison of the means of RLA and ELA was performed by Student’s t test at 5% probability. We also calculated the mean absolute error (MAE), the root mean square error (RMSE) and the Willmott index (d). The best equation was defined by the following criteria: non-significant values of RLA and ELA averages, R2 and index d closest to unit, and MAE and RMSE values with greater proximity to zero. The quadratic model equation represented by ELA=0.18122798+0.72847767(LW)+0.00002789(LW)2 generated by multiplying the length with the width (LW) is the most suitable for the estimation of the leaf area of Maytenus obtusifolia Mart., in a fast, safe and non-destructive way.
Cite this paper: Oliveira, V. , dos Santos, K. , Pinheiro, A. , Santos, G. , Santos, J. , Chisté, H. , Schmildt, O. , Arantes, S. , Czepak, M. , Fernandes, A. and Schmildt, E. (2019) Modeling of the Leaf Area of Maytenus obtusifolia Mart. from Scanned Images. Agricultural Sciences, 10, 796-806. doi: 10.4236/as.2019.106061.
References

[1]   Blanco, F.F. and Folegatti, M.V. (2005) Estimation of Leaf Area for Greenhouse Cucumber by Linear Measurements under Salinity and Grafting. Scientia Agricola, 62, 305-309.
https://doi.org/10.1590/S0103-90162005000400001

[2]   Santos, R.O., Soares, R.N., Pimentel, M.P.Q., Abreu, J.C., Lima, R.B. and Silva, B.M.S. (2018) Modeling the Leaf Area of Ormosia paraenses Ducke by Statistical Models and Artificial Neural Networks. Chilean Journal of Agricultural Research, 78, 511-520.
https://doi.org/10.4067/S0718-58392018000400511

[3]   Malagi, G., Citadin, I., Scariot, S. and Reis, L. (2010) Non-Destructive Method for Leaf Area Determination of Grapevine, BRS-Violeta Cultivar. Revista Brasileira de Fruticultura, 32, 1250-1254.
https://doi.org/10.1590/S0100-29452011005000005

[4]   Cho, Y.Y., Oh, S., Oh, M.M. and Son, J.E. (2007) Estimation of Individual Leaf Area, Fresh Weight, and Dry Weight of Hydroponically Grown Cucumbers (Cucumis sativus L.) Using Leaf Length, Width, and SPAD Value. Scientia Horticulturae, 111, 330-334.
https://doi.org/10.1016/j.scienta.2006.12.028

[5]   Peksen, E. (2007) Non-Destructive Leaf Area Estimation Model for Faba Bean (Vicia faba L.). Scientia Horticulturae, 113, 322-328.
https://doi.org/10.1016/j.scienta.2007.04.003

[6]   Rouphael, Y., Colla, G., Fanasca, S. and Karam, F. (2007) Leaf Area Estimation of Sunflower Leaves from Simple Linear Measurements. Photosynthetica, 45, 306-308.
https://doi.org/10.1007/s11099-007-0051-z

[7]   Toebe, M., Brum, B., Lopes, S.J., Filho, A.C. and Silveira, T.R. (2010) Estimate Leaf Area of Crambe abyssinica for Leaf Discs and Digital Photos. Ciência Rural, 40, 445-448.
https://doi.org/10.1590/S0103-84782010000200036

[8]   Pompelli, M.F., Antunes, W.C., Ferreira D.T.R.G., Cavalcante, P.G.S., Wanderley Filho, H.C.L. and Endres, L. (2012) Allometric Models for Non-Destructive Leaf Area Estimation of Jatropha curcas. Biomass and Bioenergy, 36, 77-85.
https://doi.org/10.1016/j.biombioe.2011.10.010

[9]   Schmildt, E.R., Amaral, J.A.T., Santos, J.S. and Schmildt, O. (2015) Allometric Model for Estimating Leaf Area in Clonal Varieties of Coffee (Coffea canephora). Revista Ciência Agronômica, 46, 740-748.
https://doi.org/10.5935/1806-6690.20150061

[10]   Buttaro, D., Rouphael, Y., Rivera, C.M., Colla, G. and Gonnella, M. (2015) Simple and Accurate Allometric Model for Leaf Area Estimation in Vitis vinifera L. Genotypes. Photosynthetica, 53, 342-348.
https://doi.org/10.1007/s11099-015-0117-2

[11]   Costa, A.P., Pôças, I. and Cunha, M. (2016) Estimating the Leaf Area of Cut Roses in Different Growth Stages Using Image Processing and Allometrics. Horticulturae, 2, 6.
https://doi.org/10.3390/horticulturae2030006

[12]   Carvalho, J.O., Toebe, M., Tartaglio, F.L., Bandeira, C.T. and Tambara, A.L. (2017) Leaf Area Estimation from Linear Measurements in Different Ages of Crotalaria juncea Plants. Anais da Academia Brasileira de Ciências, 89, 1851-1868.
https://doi.org/10.1590/0001-3765201720170077

[13]   Oliveira, P.S., Silva, W., Costa, A.A.M., Schmildt, E.R. and Vitória, E.L. (2017) Leaf Area Estimation in Litchi by Means of Allometric Relationships. Revista Brasileira de Fruticultura, 39, 1-6.
https://doi.org/10.1590/0100-29452017403

[14]   Vitória, E.L., Freitas, I.L.J, Locatelli, T., Lacerda, E.G., Valle, J.M., Pereira, R.C., Almeida, P.F.P., Vitoria, R.Z., Simom, C.P. and Fernandes, A.A. (2018) Mathematical Models for Leaf Area Estimates of Guava. Journal of Agricultural Science, 10, 272-278.
https://doi.org/10.5539/jas.v10n12p272

[15]   Oliveira, V.S., Hell, L.R., Santos, K.T.H., Pelegrini, H.R., Santos, J.S.H., Oliveira, G.E., Nascimento, A.L., Santos, G.P., Schmildt, O., Czepak, M.P., Arantes, S.D., Alexandre, R.S. and Schmildt, E.R. (2019) Estimation of Leaf Area of Jackfruit Through Non-Destructive Method. Journal of Agricultural Science, 11, 77-85.
https://doi.org/10.5539/jas.v11n6p77

[16]   Ribeiro, A.M.S., Mundim, D.A., Mendonça, D.C., Santos, K.T.H. Santos, J.S.H., Oliveira, V.S., Santos, G.P., Rosa, L.V.C.A., Santana, W.R., Schmildt, O., Vitória, E.L. and Schmildt, E.R. (2019) Leaf Area Estimation of Garden Boldo From Linear Dimensions. Journal of Agricultural Science, 11, 461-469.
https://doi.org/10.5539/jas.v11n5p461

[17]   Corrêa, M.P. (1984) Dictionary of Useful Plants of Brazil and Cultivated Exotics. IBDF-Ministério da Agricultura, Rio de Janeiro, 149.

[18]   Benevides, C.R., Haddad, I.V.N., Barreira, N.P., Rodarte, A.T.A., Galetto, L., de Santiago-Fernandes, L.D.R. and de Lima, H.A. (2013) Maytenus obtusifolia Mart. (Celastraceae): A Tropical Woody Species in a Transitional Evolutionary Stage of the Gynodioecy—Dioecy Pathway. Plant Systematics and Evolution, 299, 1693-1707.
https://doi.org/10.1007/s00606-013-0826-6

[19]   Alvares, C.A., Stape, J.L, Sentelhas, P.C., Gonçalves, J.L.M. and Sparovek, G. (2014) Köppen’s Climate Classification Map for Brazil. Meteorologische Zeitschrift, 22, 711-728.
https://doi.org/10.1127/0941-2948/2013/0507

[20]   Schindelin, J., Rueden, C.T., Hiner, M.C. and Eliceiri, K.W. (2015) The ImageJ Ecosystem: An Open Platform for Biomedical Image Analysis. Molecular Reproduction and Development, 82, 518-529.
https://doi.org/10.1002/mrd.22489

[21]   Willmott, C.J. (1981) On the Validation of Models. Physical Geography, 2, 184-194.
https://doi.org/10.1080/02723646.1981.10642213

[22]   R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

[23]   Ferreira, E.B., Cavalcanti, P.P. and Nogueira, D.A. (2018) Package ‘ExpDes.pt’.

[24]   Queiroz, J.E., Silva, G.H. and Souza Neto, A.G. (2013) Statistic Evaluation of Leaf Area through Models of Equation in Two Tree Species. Revista Verde, 8, 146-153.

[25]   Mota, C.S., Leite, H.G. and Cano, M.A.O. (2014) Equations to Estimate Leaf Area of Acrocomia aculeta Leaflets. Pesquisa Florestal Brasileira, 34, 217-224.
https://doi.org/10.4336/2014.pfb.34.79.684

[26]   Espindula, M.C., Passos, A.M.A., Araújo, L.F.B., Marcolan, A.L., Partelli, F.L. and Ramalho, A.R. (2018) Indirect Estimation of Leaf Area in Genotypes of ‘Conilon’ Coffee (Coffea canephora Pierre ex A. Froehner). Australian Journal of Crop Science, 12, 990-994.
https://doi.org/10.21475/ajcs.18.12.06.PNE1090

[27]   Godoy, L.J.G., Yanagiwara, R.S., Villas Bôas, R.L., Backes, C. and Lima, C.P. (2007) Digital Image Analysis for Estimatives of Leaf Area in “Pera” Orange Plants. Revista Brasileira de Fruticultura, 29, 420-424.
https://doi.org/10.1590/S0100-29452007000300004

[28]   Santos, S.N., Digan, R.C., Aguilar, A.G., Souza, C.A.S., Pinto, D.G., Marinato, C.S. and Arpini, T.S. (2014) Comparative Analysis of Methods of Determining Leaf Area in Cocoa Genotypes. Bioscience Journal, 30, 411-419.

 
 
Top