JEAS  Vol.9 No.2 , June 2019
Transfer and Reactivity of Hydrogen Sulfide with Immobilized Hemeproteins in Polymeric Matrix
Abstract: Hydrogen sulfide (H2S) has been related to be toxic and to have a role in human physiological functions. Therefore, there is a necessity to comprehend ways to scavenger hydrogen sulfide from different media. Here, we used recombinant metaquo-Hemoglobin I (metHbI) from Lucina pectinata and metaquo-myoglobin (metMb) encapsulated in the tetramethyl orthosilicate gel (TMOS), to facilitate the understanding of H2S transfer toward these metaquo-hemeproteins. In this sol-gel environment, metHbI binds and releases H2S with rate constants of 0.0597 M-1·s-1 and 6.67 × 10-5 s-1, respectively. The process generates an H2S affinity constant (kon/koff) of 8.9 × 102 M-1, which is 107 lowers than the analogous constant in solution (6.3 × 109 M-1). Although the H2S koff for the rHbI-H2S complex is almost similar with both sol-gel and solution. To further understand how the H2S koff from rHbI-H2S in solution (5 μM) is influenced by the protein concentration gradient, metHbI and metMb (25 μM) encapsulated in TMOS sol-gel. Under these circumstances, the H2S transfer from a solution of the rHbI-H2S complex to encapsulated hemeprotein resulted in koff values of 1.90 × 10-4 s-1, and 2.09 × 10-4 s-1 leading to the formation of rHbI-H2S and Mb-H2S species, respectively. The results suggest that the: 1) extreme ionic TMOS construct limits the H2S pathways to reach the hemeprotein active center, 2) possible interaction with metHbI hydrophilic forces increases the hydrogen bonding networking and decreases the H2S association constant, 3) hemeproteins concentration gradients between solution and sol-gels also influence its hydrogen sulfide transfer. In the presence of oxygen or hydrogen peroxide metMb generated a mixture of Mb-H2S and sulfmyoglobin derivative, while encapsulated metHbI reaction did not produce the sulfheme species. Consequently, the results show that metHbI encapsulated in TMOS is an excellent trap for H2S from solution or gas media.
Cite this paper: Vargas-Santiago, J. and López-Garriga, J. (2019) Transfer and Reactivity of Hydrogen Sulfide with Immobilized Hemeproteins in Polymeric Matrix. Journal of Encapsulation and Adsorption Sciences, 9, 109-126. doi: 10.4236/jeas.2019.92006.

[1]   Kandimalla, V.B., Tripathi, V.S. and Ju, H. (2006) Immobilization of Biomolecules in Sol-Gels: Biological and Analytical Applications. Critical Reviews in Analytical Chemistry, 36, 73-106.

[2]   Ronda, L., Bruno, S., Campanini, B., Mozzarelli, A., Abbruzzetti, S., Viappiani, C., Cupane, A., Levantino, M. and Bettati, S. (2015) Immobilization of Proteins in Silica Gel: Biochemical and Biophysical Properties. Current Organic Chemistry, 19, 15-18.

[3]   Homaei, A.A., Sariri, R., Vianello, F. and Stevanato, R. (2013) Enzyme Immobilization: An Update. Journal of Chemical Biology, 6, 185-205.

[4]   Peng, H., Huang, Z., Zheng, Y., Chen, W., Liu, A. and Lin, X. (2014) A Novel Nanocomposite Matrix Based on Graphene Oxide and Ferrocene-Branched Organically Modified Sol-Gel/Chitosan for Biosensor Application. Journal of Solid State Electrochemistry, 18, 1941-1949.

[5]   Velychko, T.P., Soldatkin, O.O., Melnyk, V.G., Marchenko, S.V., Kirdeciler, S.K., Akata, B., Soldatkin, A.P., El'skaya, A.V. and Dzyadevych, S.V. (2016) A Novel Conductometric Urea Biosensor with Improved Analytical Characteristic Based on Recombinant Urease Adsorbed on Nanoparticle of Silicalite. Nanoscale Research Letters, 11, 1-6.

[6]   Doong, R.A. and Tsai, H.C. (2001) Immobilization and Characterization of Sol-Gel-Encapsulated Acetylcholinesterase Fiber-Optic Biosensor. Analytica Chimica Acta, 434, 239-246.

[7]   Premnath, P., Tan, B. and Venkatakrishnan, K. (2012) Bioactive Interlinked Extracellular Matrix-Like Silicon Nano-Network Fabricated by Femtosecond Laser Synthesis. BioResearch Open Access, 1, 231-238.

[8]   Castro, Y., Vazquez, N.I. and Gonzalez, Z. (2017) Synthesis of Mesoporous Silica Nanoparticles by Sol-Gel as Nanocontainer for Future Drug Delivery Applications. Boletín de la Sociedad Española de Cerámica y Vidrio, 56, 139-145.

[9]   Friedman, A.J., Han, G., Navati, M.S., Chacko, M., Gunther, L., Alfieri, A. and Friedman, J.M. (2008) Sustained Release Nitric Oxide Releasing Nanoparticles: Characterization of a Novel Delivery Platform Based on Nitrite Containing Hydrogel/Glass Composites. Nitric Oxide, 19, 12-20.

[10]   Lázár, I. and Szabó, H.J. (2018) Prevention of the Aggregation of Nanoparticles during the Synthesis of Nanogold-Containing. Gels, 4, 1-9.

[11]   Eggers, D.K. and Valentine, J.S. (2001) Crowding and Hydration Effects on Protein Conformation: A Study with Sol-Gel Encapsulated Proteins. Journal of Molecular Biology, 314, 911-922.

[12]   McClements, D.J. (2018) Encapsulation, Protection, and Delivery of Bioactive Proteins and Peptides Using Nanoparticle and Microparticle Systems: A Review. Advances in Colloid and Interface Science, 253, 1-22.

[13]   Cigdem, C., Keçeciler, C., Karis, M., Gocmen, B., Yesil-Celiktas, O. and Nalbantsoy, A. (2018) Cytotoxicity of Silica Nanoparticles with Transcaucasian Nose-Horned Viper, Vipera ammodytes transcaucasiana, Venom on U87MG and SHSY5Y Neuronal Cancer Cells. Applied Biochemistry and Biotechnology, 186, 350-357.

[14]   Gamero-Quijano, A., Huerta, F., Morallo, E. and Montilla, F. (2014) Modulation of the Silica Sol-Gel Composition for the Promotion of Direct Electron Transfer to Encapsulated Cytochrome c. Langmuir, 30, 10531-10538.

[15]   Roche, C.J. and Friedman, J.M. (2010) Nitric Oxide NO Reactions with Sol-Gel and Solution Phase Samples of the Ferric Nitrite Derivative of HbA. Nitric Oxide, 22, 180-190.

[16]   Ronda, L., Bruno, S., Faggiano, S., Bettati, S. and Mozzarelli, A. (2008) Oxygen Binding to Heme Proteins in Solution, Encapsulated in Silica Gels, and in the Crystalline State. Methods in Enzymology, 437, 311-328.

[17]   Burgos, M.I., Ochoa, A. and Perillo, M.A. (2019) β-Sheet to α-Helix Conversion and Thermal Stability of β-Galactosidase Encapsulated in a Nanoporous Silica Gel. Biochemical Biophysical Research Communications, 508, 270-274.

[18]   Wittenbergs, B. (1990) Hemoglobins of the Lucina Pectinata/Bacteria Symbiosis I. Journal of Biological Chemistry, 265, 16043-16053.

[19]   Boubeta, F.M., Bari, S.E., Estrin, D.A. and Boechi, L. (2016) Access and Binding of H2S to Hemeproteins: The Case of HbI of Lucina pectinata. Journal of Physical Chemistry B, 120, 9642-9653.

[20]   Ríos-González, B.B., Román-Morales, E.M., Pietri, R. and López-Garriga, J. (2014) Hydrogen Sulfide Activation in Hemeproteins: the Sulfheme Scenario. Journal of Inorganic Biochemistry, 133, 78-86.

[21]   Pietri, R., Lewis, A., León, R.G., Casabona, G., Kiger, L., Yeh, S.-R., Fernandez-Alberti, S., Marden, M.C., Cadilla, C.L. and López-Garriga, J. (2009) Factors Controlling the Reactivity of Hydrogen Sulfide with Hemeproteins. Biochemistry, 48, 4881-4894.

[22]   Pietri, R., Román-Morales, E. and López-Garriga, J. (2011) Hydrogen Sulfide and Hemeproteins: Knowledge and Mysteries. Antioxidants & Redox Signaling, 15, 393-404.

[23]   Bolognesi, M., Rosano, C., Losso, R., Borassi, A., Rizzi, M., Wittenberg, J.B., Boffi, A. and Ascenzi, P. (1999) Cyanide Binding to Lucina pectinata Hemoglobin I and to Sperm Whale Myoglobin: An X-ray Crystallographic Study. Biophysical Journal, 77, 1093-1099.

[24]   Rizzi, M., Wittenberg, J.B., Coda, A., Fasano, M., Ascenzi, P. and Bolognesi, M. (1994) Structure of the Sulfide-Reactive Hemoglobin from the Clam Lucina pectinata: Crystallographic Analysis at 1.5 Å Resolution. Journal of Molecular Biology, 244, 86-99.

[25]   Torres-Gonzalez, L., Diaz, R., Vega-Olivencia, C.A. and Lopez-Garriga, J. (2018) Characterization of Recombinant His-Tag Protein Immobilized onto Functionalized Gold Nanoparticles. Sensors, 18, 4264.

[26]   Diaz-Ayala, R., Torres-Gonzalez, L., Pietri, R., Cabrera, C.R. and Lopez-Garriga, J. (2017) Engineered (Lys)6-Tagged Recombinant Sulfide-Reactive Hemoglobin I for Covalent Immobilization at Multiwalled Carbon Nanotubes. ACS Omega, 2, 9021-9032.

[27]   Dulac, M., Armelle, M. and Galardon, E. (2018) Reversible Detection and Quantification of Hydrogen Sulfide by Fluorescence Using the Hemoglobin I from Lucina pectinata. ACS Sensors, 3, 2138-2144.

[28]   León, R.G., Munier-Lehmann, H., Barzu, O., Baudin-Creuza, V., Pietri, R., López-Garriga, J. and Cadilla, C.L. (2004) High-Level Production of Recombinant Sulfide-Reactive Hemoglobin I from Lucina pectinata in Escherichia coli: High Yields of Fully Functional Holoprotein Synthesis in the BLi5 E. coli Strain. Protein Expression and Purification, 38, 184-195.

[29]   Wittenbergg, B. and Jing-Fen, L. (1990) Hemoglobins of the Lucina pectinata/Bacteria Symbiosis. Journal of Biological Chemistry, 265, 16054-16059.

[30]   Roche, C.J., Dantsker, D., Samuni, U. and Friedman, J.M. (2006) Nitrite Reductase Activity of Sol-Gel-Encapsulated Deoxyhemoglobin: Influence of Quaternary and Tertiary Structure. Journal of Biological Chemistry, 281, 36874-36882.

[31]   Dickson, D.J. and Ely, R.L. (2013) Silica Sol-Gel Encapsulation of Cyanobacteria: Lessons for Academic and Applied Research. Applied Microbiology and Biotechnology, 97, 1809-1819.

[32]   Yang, H., Yang, S., Kong, J., Dong, A. and Yu, S. (2015) Obtaining Information about Protein Secondary Structures in Aqueous Solution using Fourier Transform IR Spectroscopy. Nature Protocols, 10, 382-396.

[33]   Gouterman, M. (1961) Spectra of Porphyrins I. Journal of Molecular Spectroscopy, 6, 138-163.

[34]   Martelli, T., Ravera, E., Louka, A., Cerofolini, L., Hafner, M., Fragai, M., Becker, C.F.W. and Luchinat, C. (2016) Atomic-Level Quality Assessment of Enzymes Encapsulated in Bioinspired Silica. Chemistry-A European Journal, 22, 425-432.

[35]   Nevskaya, N.A. and Chirgadze, Y.N. (1976) Infrared Spectra and Resonance Interactions of Amide I and II Vibrations of α-Helix. Biopolymers, 15, 637-648.

[36]   Kong, J. and Yu, S. (2007) Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochimica et Biophysica Sinica, 39, 549-559.

[37]   Zeeshan, F., Tabbassum, M., Jorgensen, L. and Medlicott, N.J. (2018) Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices. Applied Spectroscopy, 72, 268-279.

[38]   Jackson, M. and Mantsch, H.H. (1995) The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Critical Reviews in Biochemistry Molecular Biology, 30, 95-120.

[39]   Goormaghtigh, E., Ruysschaert, J. and Raussens, V. (2006) Evaluation of the Information Content in Infrared Spectra for Protein Secondary Structure Determination. Biophysical Journal, 90, 2946-2957.

[40]   Tu, J., Boyle, A.L., Friedrich, H., Bomans, P.H.H., Bussmann, J., Sommerdijk, N.A.J.M., Jiskoot, W. and Kros, A. (2016) Mesoporous Silica Nanoparticles with Large Pores for the Encapsulation and Release of Proteins. ACS Applied Materials and Interfaces, 8, 32211-32219.

[41]   Vanea, E., Gruian, C., Rickert, C., Steinhoff, H.J. and Simon, V. (2013) Structure and Dynamics of Spin-Labeled Insulin Entrapped in a Silica Matrix by the Sol-Gel Method. Biomacromolecules, 14, 2582-2592.

[42]   Ashtari, K., Khajeh, K., Fasihi, J., Ashtari, P., Ramazani, A. and Vali, H. (2012) Silica-Encapsulated Magnetic Nanoparticles: Enzyme Immobilization and Cytotoxic Study. International Journal of Biological Macromolecules, 50, 1063-1069.

[43]   Samuni, U., Roche, C.J., Dantsker, D., Juszczak, L.J. and Friedman, J.M. (2006) Modulation of Reactivity and Conformation within the T Quaternary State of Human Hemoglobin: The Combined Use of Mutagenesis and Sol-Gel Encapsulation. Biochemistry, 45, 2820-2835.

[44]   Unno, M., Chen, H., Kusama, S., Shaik, S. and Ikeda-Saito, M. (2007) Structural Characterization of the Fleeting Ferric Peroxo Species in Myoglobin: Experiment and Theory. Journal of the American Chemical Society, 129, 13394-13395.

[45]   Lopez-Garriga, J., Wymore, T., Pietri, R., Roman-Morales, E.M., Rios-Gonzalez, B. and Arbelo, H. (2014) P90 Hydrogen Sulfide Activation by Hemeproteins: Implications of the Sulfheme Scenario. Nitric Oxide, 39, S43.

[46]   Román-Morales, E., López-Alfonzo, E., Pietri, R. and López-Garriga, J. (2016) Sulfmyoglobin Conformational Change: A Role in the Decrease of Oxy-Myoglobin Functionality. Biochemistry Biophysics Reports, 7, 386-393.

[47]   Fernandez-Alberti, S., Bacelo, D.E., Binning, R.C., Echave, J., Chergui, M. and Lopez-Garriga, J. (2006) Sulfide-Binding Hemoglobins: Effects of Mutations on Active-Site Flexibility. Biophysical Journal, 91, 1698-1709.

[48]   Nagy, P., Pálinkás, Z., Nagy, A., Budai, B., Tóth, I. and Vasas, A. (2014) Chemical Aspects of Hydrogen Sulfide Measurements in Physiological Samples. Biochimica et Biophysica Acta, 1840, 876-891.

[49]   Díaz-Ayala, R., Moya-Rodríguez, A., Pietri, R., Cadilla, C.L. and López-Garriga, J. (2015) Molecular Cloning and Characterization of a (Lys)6-Tagged Sulfide-Reactive Hemoglobin I from Lucina pectinata. Molecular Biotechnology, 57, 1050-1062.

[50]   Bostelaar, T., Vitvitsky, V., Kumutima, J., Lewis, B.E., Yadav, P.K., Brunold, T.C., Filipovic, M., Lehnert, N., Stemmler, T.L. and Banerjee, R. (2017) Hydrogen Sulfide Oxidation by Myoglobin. Journal of the American Chemical Society, 138, 8476-8488.

[51]   Jensen, B. and Fago, A. (2018) Reactions of Ferric Hemoglobin and Myoglobin with Hydrogen Sulfide under Physiological Conditions. Journal of Inorganic Biochemistry, 182, 133-140.