Back
 JWARP  Vol.11 No.6 , June 2019
A 2D GIS Approach for Mapping Aquiferous Zones Using Remotely Sensed Data within Obubra, Southeast-Nigeria
Abstract: Groundwater is vital to the sustenance and well-being of man-kind, although it is constantly under immense pressure. For this reason, there is need to develop an effective, reliable, scientific and sustainable means of delineating zones of groundwater occurrence and distribution with high precision in other to effectively explore for this resource. In this study, remote sensing (RS) and geographical information system (GIS) have been combined to develop thematic maps of the zones of groundwater occurrence and distribution based on variable factors such as; elevation, drainage, lineament, slope, lithology and soil. The analytical hierarchy procedure (AHP) was employed to classify and subsequently assign weight to each variable factor through weighted overlay analysis. Integration of these factors with their relative classes defined was used to produce a 2D-model for predicting surface aquifers mapped within Obubra. The study delineated three (3) surface aquifer zones representing groundwater potential zones. Zones representing high groundwater potential cover an area of approximately 331.94 Km2, accounting for 29.58% of the study area. The region that represents moderate to good groundwater occurrence and distribution covers an estimated area of approximately 648.42 Km2, occupying 57.78% of the study area. Zones with groundwater of low potential account for a total surface area of approximately 141.81 Km2 which is about 12.64% of the entire study area. Regions that show good to moderate and high groundwater potentials, have a wider distribution all across the study area except at the southernmost part. The study therefore shows that it is effective in delineating surface potential zones and hitherto a 2D surface aquifer model for groundwater exploration campaigns within Obubra and its environs.
Cite this paper: Kudamnya, E. , Sylvanus, R. , Essien, M. , Vulegbo, A. and Omang, B. (2019) A 2D GIS Approach for Mapping Aquiferous Zones Using Remotely Sensed Data within Obubra, Southeast-Nigeria. Journal of Water Resource and Protection, 11, 758-776. doi: 10.4236/jwarp.2019.116046.
References

[1]   Edet, A., Ukpong, A.J. and Ekwere, A.S. (2011) Impact of Climate Change on Groundwater Resources: An Example from Cross River State, Southeastern Nigeria. In: Proceedings of the Environmental Management Conference, Federal University of Agriculture, Abeokuta.

[2]   Shiklomanov, I. (1993) World Fresh Water Resources (Water in Crisis: A Guide to the World’s Fresh Water Resources). Oxford University Press, New York.

[3]   Obianwu, V.I., Egor, A.O., Okiwelu, A.A. and Ebong, E.D. (2015) Integrated Geophysical Studies over Parts of Central Cross River State for the Determination of Groundwater Potential and Foundation Properties of Rocks. Journal of Applied Geology and Geophysics, 3, 49-64.

[4]   Kudamnya, E.A. and Andongma, W.T. (2017) Predictive Mapping for Groundwater within Sokoto Basin, North Western Nigeria. Journal of Geography, Environment and Earth Science International, 10, 1-14.
https://doi.org/10.9734/JGEESI/2017/32440

[5]   Edet, A.E., Okereke, C.S., Teme, S.C. and Esu, E.O. (1998) Application of Remote Sensing Data to Groundwater Exploration: A Case Study of the Cross River State, Southeastern Nigeria. Hydrogeology Journal, 6, 394-404.
https://doi.org/10.1007/s100400050162

[6]   Esu, E.O. (2009) Hydrogeophysical Investigation of a Proposed Borehole Site in Nde Community, Ikom Local Government Area, Cross River State. Technical Report.

[7]   Akpan, A.E., Ugbaja, A.N. and George, N.J. (2013) Integrated Geophysical, Geochemical and Hydrogeological Investigation of Shallow Groundwater Resources in Parts of the Ikom-Mamfe Embayment and the Adjoining Areas in Cross River State, Nigeria. Environmental Earth Sciences, 70, 1435-1456.
https://doi.org/10.1007/s12665-013-2232-3

[8]   Osumeje, J.O. and Kudamnya, E.A. (2014) Hydro-Geophysical Investigation Using Seismic Refraction Tomography to Study the Groundwater Potential of Ahmadu Bello University Main Campus, within the Basement Complex of Northern Nigeria.

[9]   Harinarayana, P., Gopalakrishna, G.S. and Balasubramanian, A. (2000) Remote Sensing Data for Groundwater Development and Management in Keralapura Watersheds of Cauvery Basin, Karnataka, India. The Indian Mineralogists, 34, 11-17.

[10]   Muralidhar, M., Raju, K.R.K., Raju, K.S.V.P. and Prasad, J.R. (2000) Remote Sensing Applications for the Evaluation of Water Resources in Rainfed Area, Warangal District, Andhra Pradesh. The Indian Mineralogists, 34, 33-40.

[11]   Chowdhury, A., Jha, M.K. and Chowdary, V.M. (2010) Delineation of Groundwater Recharge Zones and Identification of Artificial Recharge Sites in West Medinipur District, West Bengal, Using RS, GIS and MCDM Techniques. Environmental Earth Science, 59, 1209-1222.
https://doi.org/10.1007/s12665-009-0110-9

[12]   Leblanc, M., Leduc, C., Razack, M., Lemoalle, J., Dagorne, D. and Mofor, L. (2003) Application of Remote Sensing and GIS for Groundwater Modeling of Large Semiarid Areas: Example of the Lake Chad Basin, Africa. In: Hydrology of Mediterranean and Semiarid Regions Conference, Red Books Series 278, IAHS, Wallingford, 186-192.

[13]   Sener, E., Davraz, A. and Ozcelik, M. (2005) An Integration of GIS and Remote Sensing in Groundwater Investigations: A Case Study in Burdur, Turkey. Hydrogeology Journal, 13, 826-834.
https://doi.org/10.1007/s10040-004-0378-5

[14]   Teeuw, R. (1995) Groundwater Exploration Using Remote Sensing and a Lowcost Geographic Information System. Hydrogeology Journal, 3, 21-30.
https://doi.org/10.1007/s100400050057

[15]   Sander, P., Chesley, M. and Minor, T. (1996) Groundwater Assessment Using Remote Sensing and GIS in a Rural Groundwater Project in Ghana: Lessons Learned. Hydrogeology Journal, 4, 78-93.
https://doi.org/10.1007/s100400050086

[16]   Ganapuram, S., Kumar, G., Krishna, I., Kahya, E. and Demirel, M. (2008) Mapping of Groundwater Potential Zones in the Musi Basin Using Remote Sensing and GIS. Advances in Engineering Software, 40, 506-518.
https://doi.org/10.1016/j.advengsoft.2008.10.001

[17]   Okereke, C.N., Ikoro, D.O., Amadi, C. and Okorafor, O.O. (2015) Groundwater Accessibility Using Remote Sensing Technique: A Case Study of Orlu and Adjoining Areas, Southeastern Nigeria. Scientific Research Journal, 3, 2201-2796.

[18]   Enang, E.E. (2015) Growth in Farming Population and Land Depletion and Deforestation in Rural Communities of Cross River State: The Case of Obubra Local Government Area, Nigeria. Journal of Educational and Social Research, 3, 231-236.

[19]   Adinya, I.B., Angba, A.O., Edet, E.O., Isek, P.I. and Iton, C.W. (2011) Economic Analysis and Adoption of Improved Cassava Technologies: A Strategy for Rural Transformation in Obubra Local Government Area, Cross River State, Nigeria. Nigerian Journal of Agriculture, Food and Environment, 7, 5-11.

[20]   Angba, A.O. and Itari, P. (2012) Socio-Economic Factors Influencing Farmers’ Participation in Community Development Organizations in Obubra Local Government Area of Cross River State, Nigeria. Canadian Social Science, 8, 54-59.

[21]   Egor, A.O., Osang, J.E., Emeruwa, C., Ebong, D.E., Uquetan, U.I. and Bawan A.M. (2015) Critical Study of Ground Water Potential of Part of Obubra Local Government Area, Cross River State, Nigeria. International Journal of Scientific and Technology Research, 4, 122-126.

[22]   Zaborski, P.M. (1998) A Review of Cretaceous System in Nigeria. Africa Geoscience Review, 5, 443-445.

[23]   Nguimbous-Kouoh, J.J., Takougang, E.M.T., Nouayou, R., Tabod, C.T. and Manguelle-Dicoum, E. (2012) Structural Interpretation of the Mamfe Sedimentary Basin of Southwestern Cameroon along the Manyu River Using Audio-Magnetotellurics Survey. International Scholarly Research Network (ISRN) Geophysics, 2012, Article ID: 413042.
https://doi.org/10.5402/2012/413042

[24]   Udinmwen, E., Amah, E.A., Ephraim, B.E., Ugbaja, A.N. and Udofia, P.A. (2016) Structures and Petrology of the Rocks around Ekori, Western Ikom-Mamfe Embayment, Southeastern Nigeria. Asian Journal of Chemical Sciences, 1, 2-5.
https://doi.org/10.9734/AJOCS/2016/30077

[25]   Odigi, M.I. and Amajor, L.C. (2009) Geochemical Characterization of Cretaceous Sandstones from the Southern Benue Trough, Nigeria. Journal of Geochemistry, 28, 44-54.
https://doi.org/10.1007/s11631-009-0044-7

[26]   Nigerian Geological Survey Agency, N.G.S.A. (2006) Geological and Mineral Resources Map of Cross River State, Nigeria.

[27]   Offodile, M.E. (1975) A Review of the Geology and Cretaceous of the Benue Valley. In: Kogbe, C.A., Ed., Geology of Nigeria, Elizabethen Press, Lagos, 375-376.

[28]   Cross River Basin Development Authority, C.R.B.D.A. (1982) Inventory of Natural Site Conditions, Soil Slopes, Hydrology, Land-Use and Vegetation throughout the Area of Operation of the Authority. Technical Report 4.

[29]   Odoh, B.I. (2010) Surface-Outcrop Characterization for Fracture Flow of Groundwater: Case Study of Abakaliki Basin, Ebonyi State, Nigeria. International Arch of Applied Science Technology, 1, 45-53.

[30]   Bhushan, N. and Rai, K. (2004) Strategic Decision Making: Applying the Analytic Hierarchy Process. Springer, Berlin, 9, 11-21.
http://www.springer.com/978-1-85233-756-8

[31]   Fashae, O.A., Tijani, M.N., Talabi, A.O. and Adedeji, O.I. (2014) Delineation of Groundwater Potential Zones in the Crystalline Basement Terrain of SW-Nigeria: An Integrated GIS and Remote Sensing Approach. Applied Water Science, 4, 19-38.
https://doi.org/10.1007/s13201-013-0127-9

[32]   Saaty, T.L. (1980) The Analytic Hierarchy Process: Planning. Priority Setting, Resource Allocation. McGraw Hill, New York.

 
 
Top