Back
 GEP  Vol.7 No.6 , June 2019
Health Risk Assessment in Children by Arsenic and Mercury Pollution of Groundwater in a Mining Area in Sonora, Mexico
Abstract:
A highly acidic spill from one of the most important copper mines in the Americas (Buenavista del Cobre) occurred in Sonora, Mexico in August, 2014. 40,000 m3 of metals-enriched sulphate solution escaped into the Sonora River representing the worst ecological disaster in Mexican history. The spill affected the economy, water accessibility and the health of residents near the river. Despite the economic importance of mining in this area, no environmental assessment was undertaken. There is no information about the health impact of this event on the local population. The study assesses the health risk among children exposed to arsenic and mercury via groundwater in five communities located in a mining area into the Sonora River Basin, Mexico. Local drinking water from the localities was sampled one year after the spill and it was analyzed for arsenic and mercury by Atomic Absorption Spectrometry coupled with Hydride Generation (AAS/HG). Further, some of the traditional local foods were sampled and analyzed for the same elements. Results indicate that levels of arsenic in drinking water did not exceed the Mexican Norm (25 μg As/L) or the EPA Guideline (10 μg As/L). The concentrations of mercury exceeded the WHO and Mexican Legislation value (1.0 μg Hg/L). The Hazard Quotient (HQ) values for arsenic were >1 in 42% of children exposed and for mercury in 67% of the children. Foods concentrations contained in the ranges of 9.2 to 62.0 μg As/Kg and 0.28 to 42 μg Hg/Kg for arsenic and mercury respectively. These values are below the Codex Alimentarius limits. Children affected by mining activities are at risk of developing chronic diseases associated with low arsenic and mercury exposure via groundwater consumption, without consideration of the contribution from these metals by other important exposures routes.
Cite this paper: Mendoza-Lagunas, J. , Meza-Figueroa, D. , Martínez-Cinco, M. , O’Rourke, M. , Centeno-García, E. , Romero, F. , García-Rico, L. and Meza-Montenegro, M. (2019) Health Risk Assessment in Children by Arsenic and Mercury Pollution of Groundwater in a Mining Area in Sonora, Mexico. Journal of Geoscience and Environment Protection, 7, 90-105. doi: 10.4236/gep.2019.76008.
References

[1]   Adjei-Kyereme, Y., Donkor, A. K., Golow, A. A., Yeboah, P. O., & Pwamang, J. (2015). Mercury Concentrations in Water and Sediment in Rivers Impacted by Artisanal Gold Mining in the Asutifi District, Ghana. Research Journal of Chemical & Environmental Sciences, 3, 40-48.

[2]   Argos, M., Tara, K., Rathouz, P., Chen, Y., Pierce, B., Parvez, F., Islam, T., Ahmed, A., Rakibuz-Zaman, M., Hasan, R., Sarwar, G., Slavcovich, V., Van Geen, A., Graziano, J., & Ahsan, H. (2010). Arsenic Exposure from Drinking Water, and All-Cause Chronic-Disease Mortalities in Bangladesh (HEALS): A Prospective Cohort Study. The Lancet, 376, 252-258.
https://doi.org/10.1016/S0140-6736(10)60481-3

[3]   Babayan, G., Sakoyan, G., & Sahakyan, G. (2017). Assessing the Quality of Water from Surface Sources of Drinking Water Supply to Towns of South Armenia. Electronic Journal of Natural Science, 1, 3-9.

[4]   Burgess, J. L., Kurzius-Spencer, M., O’Rourke, M. K., Littau, S. R., Roberge, J., Meza-Montenegro, M. M., Gutiérrez-Millán, L. E., & Harris, R. B. (2013). Environmental Arsenic Exposure and Serum Matrix Metalloproteinase-9. Journal of Exposure Science & Environmental Epidemiology, 23, 163-169.
https://doi.org/10.1038/jes.2012.107

[5]   Buschmann, J., Berg, M., Stengel, C., & Sampson, M. (2007). Arsenic and Manganese Contamination on Drinking Water Resources in Cambodia: Coincidence of Risk Areas with Low Relief Topography. Environmental Science & Technology, 41, 2146-2152.
https://doi.org/10.1021/es062056k

[6]   Castilhos, Z., Rodrigues-Filho, S., Villas Bôas, R., de Jesus, I., Lima, M., Faial, K., Miranda, A., Brabo, E., Beinhoff, C., & Santos, E. (2015). Human Exposure and Risk Assessment Associated with Mercury Contamination in Artisanal Gold Mining Areas in Brazilian Amazon. Environmental Science and Pollution Research, 22, 11255-11264.
https://doi.org/10.1007/s11356-015-4340-y

[7]   Chakraborti, D., Rahman, M., Murill, M., Das, R., Siddayya Patil, S., Sarkar, A., Dadapeer, H., Yendigeri, R., & Das, K. (2013). Environmental Arsenic Contamination and Its Health Effects in a Historic Gold Mining Area of the Mangaluru Greenstone Belt of the Northeastern Karnataka, India. Journal of Hazardous Materials, 262, 1048-1055.
https://doi.org/10.1016/j.jhazmat.2012.10.002

[8]   Chen, C., Chen, C., Wu, M., & Kuo, T. (1992). Cancer Potential in Liver, Lung, Bladder and Kidney Due to Ingest Inorganic Arsenic in Drinking Water. British Journal of Cancer, 66, 888-892.
https://doi.org/10.1038/bjc.1992.380

[9]   Chun, R., Hsu, K., Chen, C., & Froines, J. (2000). Arsenic Methylation Capacity and Skin Cancer. Cancer Epidemiology, Biomarkers & Prevention, 9, 1259-1262.

[10]   De Miguel, E., Clavijo, D., Ortega, M., & Gómez, A. (2014). Probabilistic Meta-Analysis of Risk the Exposure to Hg in Artisanal Gold Mining Communities in Colombia. Chemosphere, 108, 183-189.
https://doi.org/10.1016/j.chemosphere.2014.01.035

[11]   Del águila, P., Martinez, M., & Regalado, F. (2017). Cobre: Evoluciónreciente y potencial de desarrollo. Moneda Comodities, 171, 29-32.
http://www.bcrp.gob.pe/docs/Publicaciones/Revista-Moneda/moneda-171/moneda-171-05.pdf

[12]   Eke, D., & Celik, A. (2008). Genotoxicity of Thimerosal in Cultured Human Lymphocytes with and without Metabolic Activation Sister Chromatid Exchange Analysis Proliferation Index and Mitotic Index. Toxicology in Vitro, 22, 927-934.
https://doi.org/10.1016/j.tiv.2008.01.012

[13]   Fato (2015). Brasil: Una tragedia historica, minas Gerais a 20 dias del derrame minero. La Via Campesina Movimiento Campesino Internacional.
https://viacampesina.org/es/brasil-una-tragedia-historica-minas-gerais-a-20-dias-del-derrame-minero/

[14]   Gleekia, A., Pradhan, D., & Sahu, H. (2016). Impacts of Iron Ore Mining on Water Quality and the Environment in Liberia. In 6th Asian Mining Congress (pp. 371-380). Kolkata, India: The Mining Geological and Metallurgical Institute of India (MGMI).

[15]   Gomez-Parra, A., Forja, J., Delvalls, T., & Riba, I. (2000). Early Contamination by Heavy Metals of the Guadalquivir Estuary after the Aznacóllar Mining Spill (SW Spain). Marine Pollution Bulletin, 40, 1115-1123.
https://doi.org/10.1016/S0025-326X(00)00065-5

[16]   González-Merizalde, M. V., Menezes-Filho, J. A., Cruz-Erazo, C. T., Bermeo-Flores, S. A., Sánchez Castillo, M. O., Hernández-Bonilla, D., & Mora, A. (2016). Manganese and Mercury Levels in Water, Sediment and Children Living near Gold-Mining Areas of the Nangaritzarivern Basin, Ecuadorian Amazon. Archives of Environmental Contamination and Toxicology, 71, 171-182.
https://doi.org/10.1007/s00244-016-0285-5

[17]   Grandjean, P. (2007). Methylmercury Toxicity and Functional Programming. Reproductive Toxicology, 23, 414-423.
https://doi.org/10.1016/j.reprotox.2007.03.002

[18]   Grandjean, P., Murata, K., Budtz-Jorgensen, E., & Weihe, P. (2004). Cardiac Autonomic Activity in Methylmercury Neurotoxicity: 14-Year Follow-Up of a Faroese Birth Cohort. The Journal of Pediatrics, 144, 169-176.
https://doi.org/10.1016/j.jpeds.2003.10.058

[19]   Higueras, P., Oyarzun, R., Oyarzun, J., Maturana, H., Lillo, J., & Morata, D. (2004). Environmental Assessment of Copper-Gold-Mercury Mining in the Andacollo and Punitaquidistrics, Northern Chile. Applied Geochemistry, 19, 1885-1864.
https://doi.org/10.1016/j.apgeochem.2004.04.001

[20]   INEGI Instituto Nacional de Estatistica y Geografía (2010).
http://www.beta.inegi.org.mx/app/areasgeograficas/?ag=26

[21]   Jin-Soo, L., Hyo-Teak, C., & Kyoung-Woong, K. (2005). Human Risk Assessment of As, Cd, Cu and Zn in Abandoned Metal Mine Site. Environmental Geochemistry and Health, 27, 185-191.
https://doi.org/10.1007/s10653-005-0131-6

[22]   Kwon, J., Nejad, Z., & Jung, M. (2016). Arsenic and Heavy Metal in Paddy Soil and Polished Rice Contaminated by Mining Activities in Korea. CATENA, 148, 92-100.
https://doi.org/10.1016/j.catena.2016.01.005

[23]   Mahamady, P., & Orhan, G. (2016). Environmental Impacts of Gold Mining in Essakane Site of Burkina Faso. Human and Ecological Risk Assessment: An International Journal, 23, 641-654.
https://doi.org/10.1080/10807039.2016.1263930

[24]   Malm, O. (1998). Gold Mining as a Source of Mercury Exposure in the Brazilian Amazon. Environmental Research, 77, 73-78. https://doi.org/10.1006/enrs.1998.3828

[25]   Martinez-Acuña, M. I., Mercado-Reyes, M., Alegría-Torres, J. A., & Mejía-Saavedra, J. J. (2016). Preliminary Human Health Risk Assessment of Arsenic and Fluoride in Tap Water from Zacatecas, México. Environmental Monitoring and Assessment, 188, 476.
https://doi.org/10.1007/s10661-016-5453-6

[26]   MCH Mineria Chilena (2016). Polémicaporreapertura de mineraBarrik Gold, trasderrame de cianuroen Argentina. Digital Magazine Mineria Chilena.
http://www.mch.cl/2016/10/05/polemica-reapertura-minera-barrick-gold-tras-derrame-cianuro-argentina

[27]   Muhammad, S., Shah, M., & Khan, S. (2010). Arsenic Health Risk Assessment in Drinking Water and Source Apportionment Using Multivariate Statistical Techniques in Kohistan Region, Northern Pakistan. Food and Chemical Toxicology, 48, 2855-2684.
https://doi.org/10.1016/j.fct.2010.07.018

[28]   Murata, K., Weihe, P., Budtz-Jorgensen, E., Jorgensen, P., & Grandjean, P. (2004). Delayed Brainstem Auditory Evoked Potential Latencies in 14-Year-Old Children Exposed to Methylmercury. The Journal of Pediatrics, 144, 177-183.
https://doi.org/10.1016/j.jpeds.2003.10.059

[29]   Mwesigye, A., & Tumwebaze, S. (2017). Water Contamination with Heavy Metals and Trace Elements from Kilambe Copper Mine and Tailing Sites in Western Uganda; Implications for Domestic Water. Chemosphere, 169, 281-287.
https://doi.org/10.1016/j.chemosphere.2016.11.077

[30]   NMX-AA-051-SCFI-2001 Análisis de Agua-Determinación de metals por absorción atomic en aguas naturales, potables, residuales y residualestratadas-Método de prueba.

[31]   Norma Oficial Mexicana, NOM-127-SSA1-1994 “Salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización”.

[32]   O’Rourke, M. K., Rogan, S. P., Jin, S., & Robertson, G. L. (1999). Spatial Distributions of Arsenic and Mining Communities from NHEXAS Arizona. Journal of Exposure Analysis and Environmental Epidemiology, 9, 446-455.
https://doi.org/10.1038/sj.jea.7500050

[33]   Oribi, S., Dodoo, D., Armah, F., Essumag, D., & Cobbina, J. (2010). Evaluation of Lead and Mercury Neurotoxic Health Risk by Resident Children in the Obuasi Municipality, Ghana. Environmental Toxicology and Pharmacology, 29, 209-212.
https://doi.org/10.1016/j.etap.2010.01.001

[34]   Phan, K., Sthiannopkao, S., Kim, K.-W., Wong, M. H., Sao, V., Hashim, J. H., Yasin, M. S. M., & Aljunid, S. M (2010). Health Risk Assessment of Inorganic Arsenic Intake of Cambodia Residents through Groundwater Drinking Pathway. Water Research, 44, 5777-5788.
https://doi.org/10.1016/j.watres.2010.06.021

[35]   Polanco, A., López, I., Casillas, A., Araujo, L., Prusty, A., & álvarez, F. (2017). Levels of Persistent Organic Pollution in Breast Milk of Maya Women in Yucatán, México. Environmental Monitoring and Assessment, 189, 1-13.
https://doi.org/10.1007/s10661-017-5768-y

[36]   Qian, Y., Chen, C., Zhang, Q., Li, Y., Chen, Z., & Li, M. (2010). Concentrations of Cadmium, Lead, Mercury and Arsenic in Chinese Market Milled Rice and Associated Population Health Risk. Food Control, 21, 1757-1763.
https://doi.org/10.1016/j.foodcont.2010.08.005

[37]   Razo, I., Carrizales, L., Castro, J., Diaz-Barriga, F., & Monroyn, M. (2004). Arsenic and Heavy Metal Pollution of Soil, Water and Sediments in a Semi-Arid Climate Mining Area in México. Water, Air, & Soil Pollution, 159, 129-152.
https://doi.org/10.1023/B:WATE.0000015350.14520.c1

[38]   Robles, E., Tamara, L., Chavez, L., Falconi, V., Cartajena, J., Chumpitazi, J., & Tamayo, R. (2012). Derrameminero de AntaminaenCajacay: A casiunmes, el valor de la saluden debate. Patio de Sociales.

[39]   Schutzmeier, P., Berger, U., & Bose-O’Reilly, S. (2016). Gold Mining in Ecuador: A Cross-Sectional Assessment of Mercury in Urine and Medical Syntoms in Miners from Portovelo/Zaruma. International Journal of Environmental Research and Public Health, 14, 34.
https://doi.org/10.3390/ijerph14010034

[40]   SEMARNAT Secretariadel Medio Ambiente y Recursos Naturales (2014). Fideicomiso Rio Sonora.
http://www.fideicomisoriosonora.gob.mx

[41]   SGM Servicio Geológico Mexicano (2014).
https://www.gob.mx/sgm

[42]   Sly, P., & Porcenzuk, J. (2007). Guest Editorial: Susceptibility of Children to Pollutants. Paediatric Respiratory Reviews, 8, 273-274.
https://doi.org/10.1016/j.prrv.2007.07.011

[43]   Smith, A., Goycolea, M., Haque, R., & Lou, M. (1998). Marked Increase in Bladder and Lung Cancer Mortality in Region of Northern Chile Due Arsenic in Drinking Water. American Journal of Epidemiology, 147, 660-669.
https://doi.org/10.1093/oxfordjournals.aje.a009507

[44]   Sohel, N., Persson, L., Rahman, M., Streatfield, P., Yunus, M., Ekström, E. C., & Vather, M. (2009). Arsenic in Drinking Water and Adult Mortality. A Population Based Cohort Study in Rural Bangladesh. Epidemilogy, 20, 824-830.
https://doi.org/10.1097/EDE.0b013e3181bb56ec

[45]   Steckling, N., Devleesschawer, B., Winkelnkemper, J., Fischer, F., Ericson, B., Kramer, A., Homberg, C., Fuller, R., Plass, D., & Bose-O’Reilly, S. (2017). Supplementary Materials: Disability Weights for Chronic Mercury Intoxications Resulting from Gold Mining Activities: Results from an Online Pairwise Comparisons Survey. International Journal of Environmental Research and Public Health, 14, 57.
https://doi.org/10.3390/ijerph14010057

[46]   Thurston, S., Bovet, P., Myers, G., Davidson, P., Georger, L., Shamlaye, C., & Clarkson, T. (2007). Does Prenatal Methylmercury Exposure from Fish Consumption Affect Blood Pressure in Childhood? Neurotoxicology, 28, 924-930.
https://doi.org/10.1016/j.neuro.2007.06.002

[47]   Trejo-Acevedo, A., Díaz-Barriga, F., Carrizales, L., Domínguez, G., Costilla, R., Ize-Lema, I., Yarto-Ramirez M., Gavilán-García A., Saavedra-Mejía, J., & Pérez-Maldonado, I. (2009). Exposure Assessment of Persistent Organic Pollutants and Metals in Mexican Children. Chemosphere, 74, 974-980.
https://doi.org/10.1016/j.chemosphere.2008.10.030

[48]   US-EPA (1992). Framework for Ecological Risk Assessment (366 p.). EPA-630/R-92/001, Washington DC: Environmental Protection Agency.

[49]   USEPA (2008). Child-Specific Exposure Factors Handbook. Washington DC: Office of Research and Development.

[50]   USEPA (2013). Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites. Washington DC: USEPA.

[51]   Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2014). Heavy Metal Contamination and Health Risk Assessment in Drinking Water from Shallow Water Wells in an Agricultural Area in Ubon Ratchathani Province, Thailand. Environmental Geochemistry and Health, 36, 169-182.
https://doi.org/10.1007/s10653-013-9537-8

[52]   Yasuda, M., Yustiawati, Suhaemi, M., Tajuddin, M., Hosokawa, T., Sait, T., Tanaka, S., & Kurasaki, M. (2011). Metal Concentration of River Water and Sediments in West Java, Indonesia. Bulletin of Environmental Contamination and Toxicology, 87, 669-673.
https://doi.org/10.1007/s00128-011-0411-z

[53]   Zhou, H., Zeng, M., Zhou, X., Liao, B. H., Liu, J., Lel, M., Zhong, Q. Y., & Zheng, H. (2013). Assessment of Heavy Metal Contamination and Bioaccumulation in Soybean Plants form Mining and Smelting Areas of Southern Hunan Province, China. Environmental Toxicology and Chemistry, 32, 2719-2727.
https://doi.org/10.1002/etc.2389

[54]   Zulling, K., & Hendryx, M. (2011). Health-Related Quality of Life among Central Appalachian Residents in Mountaintop Mining Counties. American Journal of Public Health, 101, 848-853.
https://doi.org/10.2105/AJPH.2010.300073

 
 
Top