AS  Vol.10 No.6 , June 2019
Visualization of Chlorophyll Content Distribution in Apple Leaves Based on Hyperspectral Imaging Technology
Abstract: We took distribution visualization of chlorophyll content in apple leaves to estimate the nutrient content and growth levels of apple leaves. 130 mature and non-destructive apple leaves were collected, and imaging spectroscopy data were collected by SOC710VP hyperspectral imager. The chlorophyll content of the leaves was determined on the spectral information of the leaves. After pre-processing, we took linear wavelength stepwise regression method to choose the sensitive wavelength of chlorophyll content. And then we established partial least squares, principal component analysis and stepwise regression model. Finally, the chlorophyll content distribution visualization was realized. The results showed that the sensitive wavelengths of the chlorophyll content were 712.50 nm, 509.95 nm, 561.22 nm, 840.62 nm, 696.67 nm and 987.91 nm. The R2, RMSE, RE of the optical chlorophyll content estimation model, and the principal component analysis regression model, were 0.800, 0.319 and 26.4%. The chlorophyll content of each pixel on the hyperspectral image of apple leaves was calculated by the best estimation model and we completed the visualization distribution of chlorophyll content, which provided a technical support for the rapid detection of nutrient distribution.
Cite this paper: Wen, X. , Zhu, X. , Yu, R. , Xiong, J. , Gao, D. , Jiang, Y. and Yang, G. (2019) Visualization of Chlorophyll Content Distribution in Apple Leaves Based on Hyperspectral Imaging Technology. Agricultural Sciences, 10, 783-795. doi: 10.4236/as.2019.106060.

[1]   Wang, Z., Liu, H. and Duan, H. (2006) Study on Hyperspectral Inversion Model of Soybean Chlorophyll Content. Agriculture Engineering News, No. 8, 16-21.

[2]   Liang, S., Zhao, G. and Zhu, X. (2012) Hyperspectral Estimation Model of Chlorophyll Content in Apple Tree Leaves. Spectroscopy and Spectral Analysis, 32, 1367-1370.

[3]   Zhu, X., Zhao, G., Wang, L., Dong, F., Lei, W. and Zhan, B. (2010) Study on Prediction Model of Nitrogen Content in Apple Flower Based on Hyperspectral Data. Spectroscopy and Spectral Analysis, 30, 416-420.

[4]   Cheng, L., Zhu, X., Gao, W., Wang, L. and Zhao, G. (2016) Hyperspectral Estimation of Phosphorus Content in Apple Leaves Based on Random Forest Model. Journal of Fruit Science, 33, 1219-1229.

[5]   Curran, P.J., Dungan, J.L. and Peterson, D.L. (2001) Estimating the Foliar Biochemical Concentration of Leaves with Reflectance Spectrometry Testing the Kokaly and Clark Methodologies. Remote Sensing of Environment, 76, 349-359.

[6]   Song, K., Zhang, B., Wang, Z., Liu, H. and Duan, H. (2006) Study on Hyperspectral Inversion Model of Soybean Chlorophyll Content. Transactions of the Chinese Society of Agricultural Engineering, No. 8, 16-21.

[7]   Shi, J., Zou, X., Zhao, J. and Yin, X. (2011) Detection of Chlorophyll Leaf Surface Distribution in Cucumber Leaves by Hyperspectral Image Technique. Chinese Journal of Analytical Chemistry, 39, 243-247.

[8]   Yu, K., Zhao, Y., Li, X., Ding, X., Zhuang, Z. and He, Y. (2015) Visualization of Nitrogen Distribution in Leaves of Different Leaf Positions in Hyperspectral Imaging. Spectroscopy and Spectral Analysis, 35, 746-750.

[9]   Han, Z., Zhu, X., Fang, X., Wang, Z., Wang, L., Zhao, G. and Jiang, Y. (2016) Hyperspectral Estimation of Apple Canopy LAI Based on SVM and RF. Spectroscopy and Spectral Analysis, 36, 800-805.

[10]   Fang, X., Zhu, X., Wang, L. and Zhao, G. (2013) Monitoring of Chlorophyll Content in Canopy of Apple Fruits Based on Hyperspectral. Scientia Agricultura Sinica, 46, 3504-3513.

[11]   Tian, M., Ban, S., Chang, Q., Zhang, Z., Wu, X. and Wang, Q. (2017) Quantitative Inversion of Anthocyanins in Apple Mosaic Disease Leaves by Hyperspectral Imagery. Spectroscopy and Spectral Analysis, 37, 3187-3192.

[12]   Wang, Z. (2015) Estimation of Chlorophyll and Nitrogen Content in Apple Tree Leaves Based on Hyperspectral Data. Shandong Agricultural University, Taian.

[13]   Yi, P. and Gitelson, A.A. (2011) Remote Estimation of Gross Primary Productivity in Soybean and Maize Based on Total Crop Chlorophyll Content. Remote Sensing of Environment, 117, 440-448.

[14]   Moghaddam, P.A., Derafshi, M.H. and Shirzad, V. (2011) Estimation of Single Leaf Chlorophyll Content in Sugar Beet Using Machine Vision. Turkish Journal of Agriculture & Forestry, 35, 563-568.

[15]   Steddom, M.W.K., Bredehoeft, M., Khan, M. and Rush, M.C. (2005) Comparison of Visual and Multispectral Radiometric Disease Evaluation of Cercospora Leaf Spot of Sugar Beet. Plant Disease, 89, 1123-1130.

[16]   Liao, Q., Wang, J., Yang, G., et al. (2013) Comparison of Spectral Indices and Wavelet Transform for Estimating Chlorophyll Content of Maize from Hyperspectral Reflectance. Journal of Applied Remote Sensing, 7, 1-11.

[17]   Thomas, J.R. and Oerther, G.F. (1971) Estimating Nitrogen Content of Sweet Pepper Leaves by Reflectance Measurements. Agronomy Journal, 64, 11-13.

[18]   Abdel-Rahman, E.M., Ahmed, F.B. and Ismail, R. (2013) Random Forest Regression and Spectral Band Selection for Estimating Sugarcane Leaf Nitrogen Concentration Using EO-1 Hyperion Hyperspectral Data. International Journal of Remote Sensing, 34, 712-728.

[19]   Yadav, S.P., Ibaraki, Y. and Guputa, S.D. (2010) Estimation of the Chlorophyll Content of Micropropagated Potato Plants Using RGB Based on Image Analysis. Plant Cell, Tissue and Organ Culture, 100, 183-188.

[20]   Ren, Z., Rao, Z. and Ji, H. (2018) Identification of Different Concentrations Pesticide Residues of Dimethoate on Spinach Leaves by Hyperspectral Image Technology. IFAC-PapersOnLine, 51, 758-763.