AS  Vol.10 No.6 , June 2019
Applying Rhizobacteria on Maize Cultivation in Northern Benin: Effect on Growth and Yield
Abstract: The aim of the study was to investigate the effects of five plant growth-promoting rhizobacteria (PGPR) (Bacillus panthothenicus; Pseudomonas Cichorii; Pseudomonas Putida; Pseudomonas syringae and Serratia marcescens) on the growth and yield of maize on a ferruginous soil under field condition. Maize seeds were inoculated with 10 ml of bacterial suspension. Study was conducted in a completely randomized design with fifteen treatments and three replicates. A half-dose of recommended (13, 17, 17 kg?ha?1) NPK was applied 15 days after emergence. The results show that the Serratia marcescens + 50% NPK treatment yielded the best results for height, fresh underground biomass, dry aboveground biomass, dry underground biomass, and grain yield with respective increases of 41.09%, 217.5%, 213.34%, 93.82%, and 39.05% compared to the control. Maximum stem diameter (increases of 49.65%) was recorded in the plants treated with 100% NPK (full dose NPK) while the highest leaf area (466.36 ± 9.57 cm2), obtained on plant treated with Pseudomonas putida + 50% NPK was 32.08% greater than in the non-inoculated control. Our results suggest the use of these rhizobacteria as biological fertilizers for enhancing the growth and maize seed yield in ferruginous soil in the North of Benin.
Cite this paper: Amogou, O. , Dagbénonbakin, G. , Agbodjato, N. , Noumavo, P. , Salako, K. , Adoko, M. , Kakaï, R. , Adjanohoun, A. and Baba-Moussa, L. (2019) Applying Rhizobacteria on Maize Cultivation in Northern Benin: Effect on Growth and Yield. Agricultural Sciences, 10, 763-782. doi: 10.4236/as.2019.106059.

[1]   Naitormmbaide, M., Djondang, K., Mama, V.J. and Koussou, M. (2015) Criblage de quelques variétés de maïs (Zea mays L.) pour la résistance au Striga hermonthica (Del) Benth dans les savanes tchadiennes. Journal of Animal & Plant Sciences, 24, 3722-3732.

[2]   Johnston-Monje, D. and Raizada, M.N. (2011) Conservation and Diversity of Seed Associated Endophytes in Zea across Boundaries of Evolution, Ethnography and Ecology. PLoS ONE, 6, e20396.

[3]   WFP (2014) Global Analysis of Vulnerability Food Security and Nutrition (AGVSAN). 146.

[4]   Toléba-Séidou, M., Biaou, G., Saïdou, A. and Zannou, A. (2015) Fonctionnement de la filière maïs au Bénin. Cahiers du CBRST, Cotonou (Bénin), 1, 73-35-73.

[5]   MAEP (Benin Ministry of Agriculture, Livestock and Fisheries) (2017) MAEP Plan Stratégique de Développement du Secteur Agricole (PSDSA) 2025 et Plan National d’Investissements Agricoles et de Sécurité Alimentaire et Nutritionnelle PNIASAN 2017-2021. Cotonou NB.

[6]   INRAB (2016) Fertilité des sols au Bénin. 4ème Trimestre, Dépôt légal N°9841 du 05/12/2017, Bibliothèque National du Bénin, 2.

[7]   Hengl, T., Leenaars, J.G.B., Shepherd, K.D., Walsh, M.G., Heuvelink, G.B.M., Mamo, T., Tilahun, H., Berkhout, E., Cooper, M., Fegraus, E., et al. (2017) Soil Nutrient Maps of Sub-Saharan Africa: Assessment of Soil Nutrient Content at 250 m Spatial Resolution Using Machine Learning. Nutrient Cycling Agroecosystems, 109, 77-102.

[8]   Gupta, G., Parihar, S.S., Ahirwar, N.K., Snehi, S.K. and Singh, V. (2015) Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for Development of Sustainable Agriculture. Journal of Microbial and Biochemical Technology, 7, 96-102.

[9]   Sanchez, P.A., Shepherd, K.D., Soule, M.J., Place, F.M., Mokwunye, A.U., Buresh, R.J., Kwesiga, F.R., Izac, A.N., Ndiritu, C.G. and Woomer, P.L. (1997) Soil Fertility Replenishment in Africa: An Investment in Natural Resource Capital. In: Buresh, R.J., Sanchez, P.A. and Calhoun, F., Eds., Replenishing Soil fertility in Africa, SSSA Special Publication, Soil Science Society of American and American Society of Agronomy, Madison, 43-121.

[10]   Mongana, J.C. (2014) Détermination du moment d’application de Tithonia diversifolia et son évaluation agro économique sous culture de haricot (Phaseolus Vulgaris L.).

[11]   INSAE (Institut National de la Statistique et de l’Analyse Economique) (2013) Interim Results of the Rgph 4. Cotonou.

[12]   Timmusk, S., Behers, L., Muthoni, J., Muraya, A. and Aronsson, A.C. (2017) Perspectives and Challenges of Microbial Application for Crop Improvement. Frontier Plant Science, 8, 49.

[13]   Kloepper, J.W., Lifshitz, R. and Zablotowicz, R.M. (1989) Free-Living Bacterial Inocula for Enhancing Crop Productivity. Trends in Biotechnology, 7, 39-44.

[14]   Cherif, H., Neifar, M., Chouchane, H., Soussi, A., Hamdi, C. and Guesmi, A. (2017) Extremophile Diversity and Biotechnological Potential from Desert Environments and Saline Systems of Southern Tunisia. In: Ravi, V., Durvasula, D. and Subba Rao, V., Eds., Extremophiles: From Biology to Biotechnology, CRC Publishers, Boca Raton, 33-64.

[15]   Van der Heijden, M.G., Bardgett, R.D. and van Straalen, N.M. (2008) The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecology Letters, 11, 296-310.

[16]   Bhardwaj, D., Ansari, M.W., Sahoo, R.K. and Tuteja, N. (2014) Biofertilizers Function as Key Player in Sustainable Agriculture by Improving Soil Fertility, Plant Tolerance and Crop Productivity. Microbial Cell Factories, 3, 66.

[17]   Choudhary, D.K. and Varma, A. (2016) Microbial-Mediated Induced Systemic Resistance in Plants. Springer Science + Business Media, Singapore.

[18]   Drogue, B., Doré, H., Borland, S., Wisniewski-Dyé, F. and Prigent-Combaret, C. (2012) Which Specificity in Cooperation between Phytostimulating Rhizobacteria and Plants. Research in Microbiology, 163, 500-510.

[19]   Matteoli, F.P., Passarelli-Araujoa, H., Reisb, R.J.A., Rochab, O.L., Souzac, M.E., Aravindd, L., Olivaresb, L.F. and Venancio, M.T. (2018) Genome Sequencing and Assessment of Plant Growth-Promoting Properties of a Serratia marcescens Strain Isolated from Vermicompost. BMC Genomics, 19, 750.

[20]   Cakmakci, R., Dönmez, M.F. and Erdogan, ü. (2007) The Effect of Plant Growth Promoting Rhizobacteria on Barley Seedling Growth, Nutrient Uptake, Some Soil Properties, and Bacterial Counts. Turkey Journal of Agriculture and Forestry, 31, 189-199.

[21]   Alori, E.T., Glick, B.R. and Babalola, O.O. (2017) Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontier Microbiology, 8, 971.

[22]   Amogou, O., Dagbénonbakin, G., Agbodjato, N.A., Noumavo, P.A., Salami, H.A., Valère, S., Ricardos, A.M., Sylvestre, A.A., Djihal, K.F.A., Adjanohoun, A. and Baba-Moussa, L. (2018) Influence of Isolated PGPR Rhizobacteria in Central and Northern Benin on Maize Germination and Greenhouse Growth. American Journal of Plant Sciences, 9, 2775-2793.

[23]   Agbodjato, N.A., Noumavo, P.A., Baba-Moussa, F., Salami, H.A., Sina, H., Sèzan, A., Bankolé, H., Adjanohoun, A. and Baba-Moussa, L. (2015) Characterization of Potential Plant Growth Promoting Rhizobacteria Isolated from Maize (Zea mays L.) in Central and Northern Benin (West Africa). Applied and Environmental Soil Science, 2015, Article ID: 901656.

[24]   MAEP (Benin Ministry of Agriculture, Livestock and Fisheries) (2016) Catalogue Béninois des Espèces et Variétés végétales (CaBEV), 2016. 4ème trimestre, INRAB/DPVPPAAO/ProCAD/MAEP & CORAF/WAAPP, Dépôt légal N° 8982 du 21 octobre 2016, Bibliothèque Nationale (BN) du Bénin, 339.

[25]   CRA-Nord (2007) Rapport Annuel. Institut National des Recherches Agricoles du Bénin, Centre de Recherche Agricole Nord Ina, Bénin.

[26]   Hillebrand, W.F., Lundell, G.E.F., Bright, H.A. and Hoffman, J.I. (1953) Applied Inorganic Analysis. 2nd Edition, John Wiley and Sons, Inc., New York.

[27]   Bray, R.I. and Kurtz, L.T. (1945) Determination of Total Organic, and Available Forms of Phosphorus in Soils. Soil Sciences, 59, 39-45.

[28]   Walkley, A. and Black, I.A. (1934) An Examination Method of the Det Jareff and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37, 29-38.

[29]   McLean, E.O. (1982) Soil pH and Lime Requirement. In: Page, A.L., Miller, R.H. and Keeney, D.R., Eds., Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties—Agronomy No. 9, ASA-SSSA, Madison, 199-224.

[30]   Guiraud, J. and Galzy, P. (1994) Contrôle Microbiologique dans les Industries Agroalimentaires (2ème eds) Doin.

[31]   Wahyudi, A.T., Astuti, R.P., Widyawati, A., Meryandini, A. and Nawangsih, A.A. (2011) Characterization of Bacillus sp. Strains Isolated from Rhizosphere of Soybean Plants for Their Use as Potential Plant Growth for Promoting Rhizobacteria. Journal of Microbiology and Antimicrobial, 3, 34-40.

[32]   Aparna, Y. and Sarada, J. (2012) Molecular Characterization and Phylogenetic Analysis of Serratia sp-YAJS: An Extracellular Dnase Producer Isolated from Rhizosphere Soil.

[33]   Govindappa, M.R.V., Ravishankar, S. and Lokesh (2011) Screening of Pseudomonas Fluorescens Isolates for Biological Control of Macrophomina phaseolina Root-Rot of Safflower. African Journal of Agricultural Research, 6, 6256-6266.

[34]   Ruget, F., Bonhomme, R. and Chartier, M. (1996) Estimation simple de la surface foliaire de plantes de maïs en croissance. Agronomie, 16, 553-562.

[35]   Valdés, E.M.F., González, E.C., Serrano, M.M., Labrada, H.R., Báez, E.M., Hernández, F.G. and Hernández, F.A. (2013) Experiencias obtenidas en el desarrollo participativo de híbridos lineales simples de maíz en condiciónes de bajos insumos agrícolas. Cultivos Tropicales, 34, 61-69.

[36]   Olsen, S.R. and Sommers, L.E. (1982) Phosphorus. In: Page, A.L., Miller, R.H. and Keeney, D.R., Eds., Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties—Agronomy No. 9, ASA-SSSA, Madison, 403-427.

[37]   Sertsu, S. and Bekele, T. (2000) Procedures for Soil and Plant Analysis. Ethiopian Agricultural Research Organization, Addis Ababa.

[38]   Thomas, G.W. (1982) Exchangeable Cation. In: Page, A.L., Miller, R.H. and Keeney, D.R., Eds., Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties—Agronomy No. 9, ASA-SSSA, Madison, 154-157.

[39]   George, T.S., Gregory, P.J. and Wood, M. (2002) Phosphatase Activity and Organic Acids in the Rhizosphere of Potential Agroforesty Species and Maize. Soil Biology and Biochemistry, 34, 1487-1494.

[40]   Martínez-Viveros, O.M.A., Jorquera, D.E., Crowley, G. and Gajardo, M.L. (2010) Mechanisms and Practical Considerations Involved in Plant Growth Promotion by Rhizobacteria. Journal of Soil Science and Plant Nutrition, 10, 293-319.

[41]   Sanchez, P.A. and Jama, B.A. (2002) Soil Fertility Replenishment Takes off in East and Southern Africa. International Centre for Research in Agro Forestry, Nairobi, 352.

[42]   Wezel, A., Rajot, J.L. and Herbrig, C. (2000) Influence of Shrubs on Soil Characteristics and Their Function in Sahelian Agro-Ecosystems in Semi-Arid Niger. Journal of Arid Environments, 44, 383-398.

[43]   Igué, A.M., Saïdou, A., Adjanohoun, A., Ezui, G., Attiogbé, P., Kpagbin, G., GotoechanHodonou, H., Youl, S., Pare, T., Balogoun, I., Ouedraogo, J., Dossa, E., Mando, A. and Sogbedji, J.M. (2013) Evaluation de la fertilité des sols au sud et centre du Bénin. Bulletin de la Recherche Agronomique du Bénin (BRAB) Numéro Spécial Fertilité du maïs Janvier.s.

[44]   Kaur, G. and Reddy, M.S. (2015) Effects of Phosphate-Solubilizing Bacteria, Rock Phosphate and Chemical Fertilizers on Maize-Wheat Cropping Cycle and Economics. Pedosphere, 25, 428-437.

[45]   Chakraborty, U., Chakraborty, B.N. and Chakraborty, A.P. (2010) Influence of Serratia marcescens TRS-1 on Growth Promotion and Induction of Resistance in Camellia sinensis against Fomes lamaoensis. Journal of Plant Interactions, 5, 261-272.

[46]   Ashrafi, V. and Naser, M. (2011) Influence of Different Plant Densities and Plant Growth Promoting Rhizobacteria (Pgpr) on Yield and Yield Attributes of Corn (Zea maize L.). Recent Research in Science and Technology, 3, 63-66.

[47]   Ahemad, M. and Kiber, M. (2014) Mechanisms and Applications of Plant Growth Promoting Rhizobacteria: Current Perspective. Journal of King Saud University: Science, 26, 1-20.

[48]   Akhtar, N., Naveed, M., Khalid, M., Ahmad, N., Rizwan, M. and Siddique, S. (2018) Effect of Bacterial Consortia on Growth and Yield of Maize Grown in Fusarium Infested Soil. Soil Environment, 37, 35-44.

[49]   Moustaine, M., Elkahkahi, R., Benbouazza, A., Benkirane, R. and Achbani, E.H. (2017) Effect of Plant Growth Promoting Rhizobacterial (PGPR) Inoculation on Growth in Tomato (Solanum lycopersicum L.) and Characterization for Direct PGP Abilities in Morocco. International Journal of Environment, Agriculture and Biotechnology, 2, 590-596.

[50]   Duponnois, R., Founoune, H., Masse, D. and Pontanier, R. (2005) Inoculation of Acacia Endophytes in Zea across Boundaries of Evolution, Ethnography and Ecology.

[51]   Biaou, G. and Gnimadi, C. (2012) étude socio-économique de synthèse des villages de Founougo_A, Founougo_B et Kanderou. Rapport provisoire pour le “Projet d’Appui à l’Opérationnalisation des Villages du Millénaire” (PVM). 150.

[52]   Isfahani, F.M. and Besharati, H. (2012) Effect of Biofertilizers on Yield and Yield Components of Cucumber. Journal of Biology and Earth Sciences, 2, 83-92.

[53]   Mosimann, C., Oberhänsli, T., Ziegler, D., Nassal, D., Kandeler, E., Boller, T., Mäder, P. and Thonar, C. (2017) Tracing of Two Pseudomonas Strains in the Root and Rhizoplane of Maize, as Related to Their Plant Growth-Promoting Effect in Contrasting Soils. Frontiere in Microbiology, 7, 2150.

[54]   Zabihi, H., Savaghebi, G., Khavazi, K., Ganjali, A. and Miransari, M. (2011) Pseudomonas Bacteria and Phosphorous Fertilization, Affecting Wheat (Triticum aestivum L.) Yield and P Uptake under Greenhouse and Field Conditions. Acta Physiologiae Plantarum, 33, 145-152.

[55]   Lavakush, Y.J. and Verma, J.P. (2012) Isolation and Characterization of Effective Plant Growth Promoting Rhizobacteria from Rice Rhizosphere of Indian Soil. Asian Journal Biological Science, 5, 294-303.

[56]   Suslow, T.V. and Schroth, M.N. (1982) Rhizobacteria of Sugarbeet: Effects of Seed Application and Root Colonization on Yield. Phytopathology, 72, 199-206.

[57]   Biari, A., Gholami, A. and Rahmani, H.A. (2008) Growth Promotion and Enhanced Nutrient Uptake of Maize (Zea mays L.) by Application of Plant Growth Promoting Rhizobacteria in Arid Region of Iran. Journal of biological Sciences, 8, 1015-1020.

[58]   Deepa, C.K., Dastager, S.G. and Pandey, A. (2010) Isolation and Characterization of Plant Growth Promoting Bacteria from Non-Rhizospheric Soil and Their Effect on Cowpea (Vigna unguiculata (L.) Walp.) Seedling Growth. World Journal Microbiology and Biotechnology, 26, 1233-1240.

[59]   Riberiro, C.M. and Cardoso, E.J. (2012) Isolation, Selection and Characterization of Root Associated Growth Promoting Bacteria in Brazil Pine (Araucaria angustifolia). Microbiology Research, 167, 69-78.

[60]   Bouffaud, M.L., Renoud, S., Moënne-Loccoz, Y. and Muller, D. (2016) Is Plant Evolutionary History Impacting Recruitment of Diazotrophs and nifH Expression in the Rhizosphere? Scientific Reports, 6, Article No. 21690.

[61]   Berger, B., Wiesner, M., Brock, A.K., Schreiner, M. and Ruppel, S. (2015) K. radicincitans: A Beneficial Bacteria That Promotes Radish Growth under Field Conditions. Agronomy for Sustainable Development, 35, 1521-1528.

[62]   Agbodjato, N.A., Amogou, O., Noumavo, P.A., Dagbenonbakin, G., Hafiz, A.S., Kamirou, R., Alladé, A.M., Adebayo, O., Baba-Moussa, F., Adjanohoun, A. and Ba-ba-Moussa, L. (2018) Biofertilising, Plant-Stimulating and Biocontrol Potentials of Isolated PGPR Rhizobacteria in Central and Northern Benin. African Journal of Microbiology Research, 12, 664-672.

[63]   Khalid, A., Arshad, M. and Zahir, Z. (2004) Screening Plant Growth-Promoting Rhizobacteria for Improving Growth and Yield of Wheat. Journal of Applied Microbiology, 96, 473-480.

[64]   Joshi, B.H. and Joshi, P.P. (2017) Screening and Characterization of Multi-Trait Plant Growth Promoting Bacteria Associated with Sugarcane for Their Prospects as Bioinoculants. International Journal of Current Microbiology and Applied Sciences, 6, 240-252.

[65]   Kilian, M., Steiner, U., Krebs, B., Junge, H., Schmiedeknecht, G. and Hain, R. (2000) FZB24® Bacillus Subtilis—Mode of Action of a Microbial Agent Enhancing Plant Vitality. Pflanzenschutz-Nachrichten Bayer, 1, 72-93.

[66]   Chowdhury, P.S., Hartmann, A., Gao, X. and Borriss, R. (2015) Biocontrol Mechanism by Root-Associated Bacillus amyloliquefaciens FZB42—A Review. Frontier in Microbiology, 6, 780.

[67]   Figueiredo, M.V.B., Seldin, L.F.F., de Araujo and Mariano, R.L.R. (2010) Plant Growth Promoting Rhizobacteria: Fundamentals and Applications. In: Maheshwari, D.K., Ed., Plant Growth and Health Promoting Bacteria, Springer, Berlin, 21-43.

[68]   Ines García de Salamone, I.E., Funes, J.M., Di Salvo, L.P., Escobar-Ortega, J.S., D’Auria, F., Ferrando, L. and Fernandez-Scavino, A. (2012) Inoculation of Paddy Rice with Azospirillum brasilense and Pseudomonas fluorescens: Impact of Plant Genotypes on Rhizosphere Microbial Communities and Field Crop Production. Applied Soil Ecology, 61, 196-204.

[69]   Rice, W.A., Lupwayi, N.Z., Olsen, P.E., Schlechte, D. and Gleddie, S.C. (2000) Field Evaluation of Dual Inoculation of Alfalfa with Sinorhizobium meliloti and Penicillium bilaii. Canadian Journal of Plant Science, 80, 303-308.