Back
 JWARP  Vol.11 No.6 , June 2019
Borehole Productivity Controlling Factors in Crystalline Bedrock Aquifer of Gkêkê Region, Center of Côte d’Ivoire
Abstract: The presence of both weathered rocks and fractured crystalline bedrock aquifers makes Hydrogeology in Gbêkê region of Côte d’Ivoire. Access to water in this region is not easy. This study focuses on the influence of borehole depth, weathering thickness and electrical resistivity of the geological structures on borehole productivity that exploit the crystalline aquifer system. Bivariate analysis was used to determine the relationships between these factors and specific capacity for measuring borehole productivity. The values ranged from 0.0088 to 2.20 m3∙h−1∙m−1. The analysis shows that there is no correlation between productivity and weathering thickness. However, weathering depths between 15 and 35 m provide the highest specific capacity values (Qs ≥ 1 m3∙h−1∙m−1). For hydrogeological discontinuities interest, boreholes located in KH, QH and H anomaly curve types were the most productive. As productivity diminishes with depth, a deeper borehole can be more productive if it reaches a geological structure that is favorable for groundwater flow. Those hydrogeological parameters are extremely important in borehole productivity in Gbêkê region.
Cite this paper: Kouame, B. , Douagui, A. , Kouame, I. , Yeo, E. and Savane, I. (2019) Borehole Productivity Controlling Factors in Crystalline Bedrock Aquifer of Gkêkê Region, Center of Côte d’Ivoire. Journal of Water Resource and Protection, 11, 728-739. doi: 10.4236/jwarp.2019.116043.
References

[1]   Okafor, P. and Mamah, L. (2012) Integration of Geophysical Techniques for Groundwater Potential Investigation in Katsina-Ala, Benue State, Nigeria. The Pacific Journal of Science and Technology, 13, 463-474.

[2]   Singh, K.P., Malik, A., Mohan, D., Sinha, S. and Singh, V.K. (2005) Chemometric Data Analysis of Pollutants in Wastewater: A Case Study. Analytica Chimica Acta, 532, 15-25.
https://doi.org/10.1016/j.aca.2004.10.043

[3]   Mastropietro, T.F., Drioli, E., Candamano, S. and Poerio, T. (2016) Crystallization and Assembling of FAU Nanozeolites on Porous Ceramic Supports for Zeolite Membrane Synthesis. Microporous and Mesoporous Materials, 228, 141-146.
https://doi.org/10.1016/j.micromeso.2016.03.037

[4]   Frontera, P., Candamano, S., Macario, A., Crea, F., Scarpino, L.A. and Antonucci, P.L. (2013) Ferrieritezeolitic Thin-Layer on Cordierite Honeycomb Support by Clear Solutions. Materials Letters, 104, 72-75.
https://doi.org/10.1016/j.matlet.2013.03.138

[5]   Candamano, S., Sgambitterra, E., Lamuta, C., Pagnotta, L., Chakraborty, S. and Crea, F. (2019) Graphene Nanoplatelets in Geopolymeric Systems: A New Dimension of Nanocomposites. Materials Letters, 236, 550-553.
https://doi.org/10.1016/j.matlet.2018.11.022

[6]   Holland, M. and Witthüser, K.T. (2011) Evaluation of Geologic and Geomorphologic Influences on Borehole Productivity in Crystalline Bedrock Aquifers of Limpopo Province, South Africa. Hydrogeology Journal, 19, 1065-1083.
https://doi.org/10.1007/s10040-011-0730-5

[7]   Neves, M.A. and Morales, N. (2007) Well Productivity Controlling Factors in Crystalline Terrains of Southeastern Brazil. Hydrogeology Journal, 15, 471-482.
https://doi.org/10.1007/s10040-006-0112-6

[8]   Davis, S.N. and Turk, L.J. (1964) Optimum Depth of Wells in Crystalline Rocks. Ground Water, 22, 6-11.
https://doi.org/10.1111/j.1745-6584.1964.tb01750.x

[9]   Banks, D. (1992) Optimal Orientation of Water-Supply Boreholes in Fractured Aquifers. Ground Water, 30, 895-900.
https://doi.org/10.1111/j.1745-6584.1992.tb01572.x

[10]   Lachassagne, P., Wyns, R. and Berard, P. (2001) Exploitation of High Yields in Hard-Rock Aquifers: Downscaling Methodology Combining GIS and Multicriteria Analysis to Delineate Field Prospecting Zones. Ground Water, 39, 568-581.
https://doi.org/10.1111/j.1745-6584.2001.tb02345.x

[11]   AnabaOnana, A.B., NdamNgoupayou, J.R. and MvondoOndoa, J. (2017) Analysis of Crystalline Bedrock Aquifer Productivity: Case of Central Region in Cameroon. Groundwater for Sustainable Development, 5, 66-74.
https://doi.org/10.1016/j.gsd.2017.05.003

[12]   Naziya, J. and Singh, N.P. (2018) Identification of Fracture Zones for Groundwater Exploration Using Very Low Frequency Electromagnetic (VLF-EM) and Electrical Resistivity (ER) Methods in Hard Rock Area of Sangod Block, Kota District, Rajasthan, India. Groundwater for Sustainable Development, 7, 195-203.
https://doi.org/10.1016/j.gsd.2018.05.003

[13]   Douagui, G.A., Kouassi, K.A., Kouamé, K.B. and Kouadio, A.K.S. (2018) Using Geophysical Anomalies for Locating Rural Groundwater Supplies in Crystalline Basement Environments of Gbêkê Region, Center of Côte d’Ivoire. Environmental and Water Sciences, Public Health & Territorial Intelligence, 2, 69-82.

[14]   Neves, M.A. (2005) Integrated Analysis Applied to Groundwater Exploration in the Jundiaí River Catchments, São Paulo State, Southeastern Brazil. PhD Thesis, Universidade Estadual Paulista, Rio Claro. (In Portuguese)

[15]   Massing, O., Adoum, I., Abderamane, H. and Dingamnodji, N. (2017) Role of Remote Sensing and Geophysics to Determine Potential Sites for Boreholes in the Crystalline Basement of the Wadifira Region: Case Study of Iriba. Asian Journal of Science and Technology, 8, 7073-7082.

[16]   Bakkali, S. and Jaafar Bouyalaoui, J. (2005) Contribution of the Geoelectrical Prospection Applied to the Data of the Hydraulic Resources of the Anergui People (Tafraoute, Moroccan Antiatlas). e-Gnosis, 3, 1-12.
http://www.e-gnosis.udg.mx/vol3/art5

[17]   Koefoed, O. (1979) Geosounding Principles, 1: Resistivity Sounding Measurements. Elsevier, Amsterdam.

[18]   Orellana, E. and Mooney, H.M. (1966) Master Tables and Curves for Vertical Electrical Sounding over Layered Structures. InercienciaCostanilla de Los Angeles, Los Angeles, 125 p.

[19]   Mayer, J.M., Allen D.M., Gibson, H.D. and Mackie, D.C. (2014) Application of Statistical Approaches to Analyze Geological, Geotechnical and Hydrogeological Data at a Fractured-Rock Mine Site in Northern Canada. Hydrogeology Journal, 22, 1707-1723.
https://doi.org/10.1007/s10040-014-1140-2

[20]   N’Go, Y.A., Goné, D.L., Savane, I. and Gobé, M.M. (2005) Potentialitésen eau souterraines des aquifèresd’Agboville (Sudouest de la côte d’Ivoire): Caractérisation hydroclimatique et physique. Afrique Science, 1, 127-144.
https://doi.org/10.4314/afsci.v1i1.35401

[21]   Kouassi, A.M., Coulibaly, D., Koffi, Y.B. and Biémi, J. (2013) Application of Geophysical Methods to the Study of the Productivity of Water Drillings in Crystalline Aquifers: Case of the Toumodi Region (Central Côte d’Ivoire). International Journal of Innovation and Applied Studies, 2, 324-334. http://www.issr-journals.org/ijias

[22]   Youanta, M., Lasm, T., Jourda, J.P.R., Kouamé, K.F. and Razack, M. (2008) Cartographie des accidents géologiques par imageriesatellitaire landsat-7 ETM+ et analyse des réseaux defractures du socleprécambrien de la région de Bondoukou (nordest de la côte d’Ivoire). Revue Télédétection, 8, 119-135.

[23]   JanvierDomra Kana, J.D., Djongyang, N., Raïdandi, D., Philippe NjandjockNouck, P.N., Nouayou, R. and Tabod, T.C. (2015) OumarouSanda Geophysical Investigation of Low Enthalpy Geothermal Potential and Ground Water, Reservoirs in the Sudano-Sahelian Region of Cameroon. Journal of African Earth Sciences, 110, 81-91.
https://doi.org/10.1016/j.jafrearsci.2015.06.007

 
 
Top