JHEPGC  Vol.5 No.3 , July 2019
On an Exact Cylindrically Symmetric Solution in a Born-Infeld Type Theory of Gravity
ABSTRACT
In this work, we derive an exact vacuum solution for a cylindrically symmetric metric in an extended gravity theory developed by Novello, De Lorenci and Luciane (hereafter referred to as the NDL theory) which is inspired in the Born-Infeld theory. The main goal of this paper is to nd a cosmic string solution for the NDL theory. However, a careful analysis of the metric shows that it is asymptotically singular and therefore does not represent a cosmic string solution.

Cite this paper
Rosa, T. , Guimarães, M. and Neto, J. (2019) On an Exact Cylindrically Symmetric Solution in a Born-Infeld Type Theory of Gravity. Journal of High Energy Physics, Gravitation and Cosmology, 5, 711-718. doi: 10.4236/jhepgc.2019.53038.
References
[1]   Kibble, T.W. (1976) Topology of Cosmic Domains and Strings. Journal of Physics A: Mathematical and General, 9, 1378.
https://doi.org/10.1088/0305-4470/9/8/029

[2]   Vilenkin, A. and Shellard, E.P. (1994) Cosmic String and Other Topological Defects. Cambridge University Press, Cambridge.

[3]   Leineker Costa, M., Naves de Oliveira, A.L. and Guimarães, M.E.X. (2006) On the Contributions from Dilatonic Strings to the Flat Behavior of the Rotational Curves in Galaxies. International Journal of Modern Physics D, 15, 387-394.
https://doi.org/10.1142/S0218271806007924

[4]   Caramês, T.R.P., de Mello, E.R.B. and Guimarães, M.E.X. (2011) Gravitational Field of a Global Monopole in a Modi_ed Gravity. International Journal of Modern Physics: Conference Series, 3, 446-454.
https://doi.org/10.1142/S2010194511000961

[5]   Caramês, T.R.P., Bezerra de Mello, E.R. and Guimarães, M.E.X. (2012) On the Motion of a Test Particle Around a Global Monopole in a Modi_ed Gravity. Modern Physics Letters A, 27, Article ID: 1250177.
https://doi.org/10.1142/S0217732312501775

[6]   Scherk, J. and Schwarz, J. (1974) Dual Models for Non-Hadrons. Nuclear Physics B, 81, 118-144.
https://doi.org/10.1016/0550-3213(74)90010-8

[7]   Corda, C. (2009) Interferometric Detection of Gravitational Waves: The De_nitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. arXiv:0905.2505[gr-qc]
https://doi.org/10.1142/S0218271809015904

[8]   Novello, M., De Lorenci, V.A., de Freitas, L.R. and Aguiar, O.D. (1999) The Velocity of Gravitational Waves. Physics Letters A, 254, 245-250.
https://doi.org/10.1016/S0375-9601(99)00080-8

[9]   Novello, M., De Lorenci, V.A. and de Freitas, L.R. (1997) Do Gravitational Waves Travel at Light Velocity? Annals of Physics, 254, 83-108.
https://doi.org/10.1006/aphy.1996.5637

[10]   Born, M. and Infeld, L. (1934) Cosmic Rays and the New Field Theory. Nature, 133, 63-64.
https://doi.org/10.1038/133063b0

[11]   Feynman, R. (1995) Lectures on Gravitation. Addison-Wesley, Boston, MA.

[12]   Deser, S. (1970) Self-Interaction and Gauge Invariance. General Relativity and Gravitation, 1, 9-18.
https://doi.org/10.1007/BF00759198

 
 
Top