Back
 ENG  Vol.11 No.5 , May 2019
The Effectiveness of the Squared Error and Higgins-Tsokos Loss Functions on the Bayesian Reliability Analysis of Software Failure Times under the Power Law Process
Abstract: Reliability analysis is the key to evaluate software’s quality. Since the early 1970s, the Power Law Process, among others, has been used to assess the rate of change of software reliability as time-varying function by using its intensity function. The Bayesian analysis applicability to the Power Law Process is justified using real software failure times. The choice of a loss function is an important entity of the Bayesian settings. The analytical estimate of likelihood-based Bayesian reliability estimates of the Power Law Process under the squared error and Higgins-Tsokos loss functions were obtained for different prior knowledge of its key parameter. As a result of a simulation analysis and using real data, the Bayesian reliability estimate under the Higgins-Tsokos loss function not only is robust as the Bayesian reliability estimate under the squared error loss function but also performed better, where both are superior to the maximum likelihood reliability estimate. A sensitivity analysis resulted in the Bayesian estimate of the reliability function being sensitive to the prior, whether parametric or non-parametric, and to the loss function. An interactive user interface application was additionally developed using Wolfram language to compute and visualize the Bayesian and maximum likelihood estimates of the intensity and reliability functions of the Power Law Process for a given data.
Cite this paper: Alenezi, F. and Tsokos, C. (2019) The Effectiveness of the Squared Error and Higgins-Tsokos Loss Functions on the Bayesian Reliability Analysis of Software Failure Times under the Power Law Process. Engineering, 11, 272-299. doi: 10.4236/eng.2019.115020.
References

[1]   Duane, J.T. (1964) Learning Curve Approach to Reliability Monitoring. IEEE Transactions on Aerospace, 2, 563-566.
https://doi.org/10.1109/TA.1964.4319640

[2]   Crow, L.H. (1975) Tracking Reliability Growth. Proceedings of the 20th Conference on Design of Experiments, Report 75-2, US Army Research Office, Research Triangle Park, NC, 741-754.

[3]   Yamada, S., Ohba, M. and Osaki, S. (1983) S-Shaped Reliability Growth Modeling for Software Error Detection. IEEE Transactions on Reliability, R-32, 475-484.
https://doi.org/10.1109/TR.1983.5221735

[4]   Goel, A.L. and Okumoto, K. (1979) Time-Dependent Error-Detection Rate Model for Software Reliability and Other Performance Measures. IEEE Transactions on Reliability, R-28, 206-211.
https://doi.org/10.1109/TR.1979.5220566

[5]   Calabria, R., Guida, M. and Pulcini, G. (1992) A Bayes Procedure for Estimation of Current System Reliability. IEEE Transactions on Reliability, 41, 616-620.
https://doi.org/10.1109/24.249599

[6]   Bain, L. and Engelhardt, M. (1991) Statistical Analysis of Reliability and Life Testing Models. Marcel-Dekker, New York, NY, USA,.

[7]   Goel, A.L. and Okumoto, K. (1984) Bayesian Inference for the Weibull Process with Applications to Assessing Software Reliability Growth and Predicting Software Failures. Proc. Sixteenth Symp. Interface, R-28, 206-211.

[8]   Tsokos, C.P. and Rao, A.N.V. (1994) Estimation of Failure Intensity for the Weibull Process. Reliability Engineering & System Safety, 45, 271–275.
https://doi.org/10.1016/0951-8320(94)90143-0

[9]   Rigdon, S.E. and Basu, A.P. (1989) The Effect of Assuming a Homogeneous Poisson Process when the True Process Is a Power Law Process. Journal of Quality Technology, 22, 111-117.
https://doi.org/10.1080/00224065.1990.11979222

[10]   Rigdon, S.E. and Basu, A.P. (1989) The Power Law Process: A Model for the Reliability of Repairable Systems. Journal of Quality Technology, 21, 251-260.
https://doi.org/10.1080/00224065.1989.11979183

[11]   Rigdon, S.E. and Basu, A.P. (1990) Estimating the Intensity Function of a Power Law Process at the Current Time: Time Truncated Case. Communications in Statistics—Simulation and Computation, 19, 1079-1104.
https://doi.org/10.1080/03610919008812906

[12]   Luo, L., Xing, L. and Levitin, G. (2018) Optimizing Dynamic Survivability and Security of Replicated Data in Cloud Systems under Co-Residence Attacks. Reliability Engineering & System Safety, in press.
https://doi.org/10.1016/j.ress.2018.09.014

[13]   Movahedi, Y., Cukier, M., Andongabo, A. and Gashi, I. (2018) Cluster-Based Vulnerability Assessment of Operating Systems and Web Browsers. 2017 13th European Dependable Computing Conference, Geneva, 4-8 September 2017, 18-25.
https://doi.org/10.1109/EDCC.2017.27

[14]   Tsokos, C.P. and Xu, Y. (2011) Non-Homogenous Poisson Process for Evaluating Stage I & II Ductal Breast Cancer Treatment. Journal of Modern Applied Statistical Methods, 10, 646-655.
https://doi.org/10.22237/jmasm/1320121320

[15]   But, A., Härkänen, T. and Haukka, J. (2017) Non-Parametric Bayesian Intensity Model: Exploring Time-to-Event Data on Two Time Scales. Scandinavian Journal of Statistics, 44, 798-814, June.
https://doi.org/10.1111/sjos.12280

[16]   Turnbull, B.W., Abu-Libdeh, H. and Clark, L.C. (1990) Estimation of Failure Intensity for the Weibull Process. Biometrics, 46, 1017-1034.
https://doi.org/10.2307/2532445

[17]   Raberto, M., Scalas, E., Ponta, L., Trinh, M. and Cincotti, S. (2019) Modeling Non-Stationarities in High-Frequency Financial Time Series. Physica A: Statistical Mechanics and Its Applications, 521, 173-196.
https://doi.org/10.1016/j.physa.2019.01.069

[18]   Kieu, L.M. (2018) Analytical Modelling of Point Process and Application to Transportation. In: Zhou, J. and Chen, F., Eds., Human and Machine Learning. Human–Computer Interaction Series, Springer, Cham.
https://doi.org/10.1007/978-3-319-90403-0_19

[19]   Sayarshad, H.R. and Chow, J.Y.J. (2016) Survey and Empirical Evaluation of Nonhomogeneous Arrival Process Models with Taxi Data. Journal of Advanced Transportation, 50, 1275-1294.
https://doi.org/10.1002/atr.1401

[20]   Qi, G., Pan, G., Li, S., Wu, Z., Zhang, D., Sun, L. and Yang, L.T. (2013) How Long a Passenger Waits for a Vacant Taxi—Large-Scale Taxi Trace Mining for Smart Cities. 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, 20-23 August 2013, 1029-1036.
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.175

[21]   Menon, A.K. and Lee, Y. (2017) Predicting Short-Term Public Transport Demand via Inhomogeneous Poisson Processes. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, ACM, New York, 2207-2210.

[22]   Yue, D., Zhao, G. and Yue, W. (2016) Analysis of a Multi-Server Queueing-Inventory System with Non-Homogeneous Poisson Arrivals. In: Proceedings of the 11th International Conference on Queueing Theory and Network Applications, ACM, New York.

[23]   Kimura, M., Toyota, T. and Yamada, S. (1999) Economic Analysis of Software Release Problems with Warranty Cost and Reliability Requirement. Reliability Engineering & System Safety, 66, 49-55.
https://doi.org/10.1016/S0951-8320(99)00020-4

[24]   Molinares, C.A. and Tsokos, C.P. (2013) Bayesian Reliability Approach to the Power Law Process with Sensitive Analysis to Prior Selection. International Journal of Reliability, Quality and Safety Engineering, 20, No. 1.
https://doi.org/10.1142/S0218539313500046

[25]   Alenezi, F.N. and Tsokos, C.P. (2018) Bayesian Reliability Analysis of the Power Law Process with Respect to the Higgins-Tsokos Loss Function for Modeling Software Failure Times. Submitted for Publication.

[26]   Higgins, J.J. and Tsokos, C.P. (1980) A Study of the Effect of the Loss Function on Bayes Estimates of Failure Intensity, MTBF, and Reliability. Applied Mathematics and Computation, 6, 145-166.
https://doi.org/10.1016/0096-3003(80)90039-9

[27]   Crow, L.H. (1975) Reliability Analysis for Complex, Repairable Systems. In: Proschan, F. and Serfling, D.J., Eds., Reliability and Biometry, Society for Industrial and Applied Mathematics, Philadelphia, PA, 379-410.

[28]   Jeffreys, H. (1946) An Invariant Form for the Prior Probability in Estimation Problems. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 186, 453-461.
https://doi.org/10.1098/rspa.1946.0056

 
 
Top