GEP  Vol.7 No.5 , May 2019
Factors Influencing Radon (222Ra) Levels of Water: An International Comparison
Radon levels were measured in 59 water samples of rural and urban places of Bangalore city following procedures of standardized techniques. Though water level of radon above 100 Bqll-1 of WHO is ascribed to causes of lung cancer and leukaemia, very low levels were found in different urban and rural places, but urban-rural gradient observed significantly higher urban levels than rural levels. Correlation between depth of water sampled and radon levels estimated indicates that in urban places, lower water depth is related to higher radon levels, while it is vice versa in rural. It is due to more water use for rural agriculture and more urban water pollution and granite quarries. In comparison to other countries, it is observed that water radon levels are at wide ranges from the lowest to the highest estimated with different techniques and differ due to types of water, soil, rocks and sampling season.
Cite this paper: Nagaraja, M. , Sukumar, A. , Dhanalakshmi, V. and Rajashekara, S. (2019) Factors Influencing Radon (222Ra) Levels of Water: An International Comparison. Journal of Geoscience and Environment Protection, 7, 69-80. doi: 10.4236/gep.2019.75008.

[1]   Aleissa, K. A., Alghamdi, A. S., Almasoud, F. I., & Islam, M. S. (2013). Measurement of Radon Levels in Groundwater Supplies of Riyadh with Liquid Scintillation Counter and the Associated Radiation Dose. Radiation Protection Dosimetry, 154, 95-103.

[2]   Calmet, D., Ameon, R., Beck, T., Bombard, A., Bourquin, M. N., Brun, S., De Jong, P. et al. (2011). International Standardisation Work on the Measurement of Radon in Air and Water. Radiation Protection Dosimetry, 145, 267-272.

[3]   Casey, J. A., Ogburn, E. L., Rasmussen, S. G., Irving, J. K., Pollak, J., Locke, P. A., & Schwartz, B. S. (2015). Predictors of Indoor Radon Concentrations in Pennsylvania, 1989-2013. Environmental Health Perspectives, 123, 1130-1137.

[4]   Cho, J. S., Ahn, J. K., Kim, H. C., & Lee, D. W. (2004). Radon Concentrations in Groundwater in Busan Measured with a Liquid Scintillation Counter Method. Journal of Environmental Radioactivity, 75, 105-112.

[5]   Dimova, N., Burnett, W. C., & Lane-Smith, D. (2009). Improved Automated Analysis of Radon (222Rn) and Thoron (220Rn) in Natural Waters. Environmental Science & Technology, 43, 8599-8603.

[6]   Eikenberg, J., Beer, H., & Jäggi, M. (2014). Determination of 210Pb and 226Ra/228Ra in Continental Water Using HIDEX 300SL LS-Spectrometer with TDCR Efficiency Tracing and Optimized α/β-Discrimination. Applied Radiation and Isotopes, 93, 64-69.

[7]   Erdogan, M., Manisa, K., & Zedef, V. (2017). Radon in Spring Water in the Region of Seydisehir of Konya Province, Turkey. Radiation Protection Dosimetry, 177, 194-197.

[8]   Gilfedder, B. S., Hofmann, H., & Cartwright, I. (2012). Novel Instruments for in Situ Continuous Rn-222 Measurement in Groundwater and the Application to River Bank Infiltration. Environmental Science & Technology, 47, 993-1000.

[9]   Gruber, V., Maringer, F. J., & Landstetter, C. (2009). Radon and Other Natural Radionuclides in Drinking Water in Austria: Measurement and Assessment. Applied Radiation and Isotopes, 67, 913-917.

[10]   International Commission on Radiation Units and Measurements (2012). Measurement and Reporting of Radon Exposures. Journal of the ICRU, 12, 1-191.

[11]   Jobbágy, V., Altzitzoglou, T., Malo, P., Tanner, V., & Hult, M. (2017). A Brief Overview on Radon Measurements in Drinking Water. Journal of Environmental Radioactivity, 173, 18-24.

[12]   Kam, E., & Bozkurt, A. (2007). Environmental Radioactivity Measurements in Kastamonu Region of Northern Turkey. Applied Radiation and Isotopes, 65, 440-444.

[13]   Kávási, N., Kobayashi, Y., Kovács, T., Somlai, J., Jobbágy, V., Nagy, K., Deák, E., Berhés, I., Bender, T., Ishikawa, T., Tokonami, S., Vaupotic, J., Yoshinaga, S., & Yonehara, H. (2011). Effect of Radon Measurement Methods on Dose Estimation. Radiation Protection Dosimetry, 145, 224-232.

[14]   Kelleher, K., Wong, J., León-Vintró, L., & Currivan, L (2017). International Rn-222 in Drinking Water Interlaboratory Comparison. Applied Radiation and Isotopes, 126, 270-272.

[15]   Khan, F., Ali, N., Khan, E. U., Khattak, N. U., & Khan, K. (2010). Radon Monitoring in Water Sources of Balakot and Mansehra Cities Lying on a Geological Fault Line. Radiation Protection Dosimetry, 138, 174-179.

[16]   Kluszczyński, D., Tybor-Czerwińska, M., Kacprzyk, J., & Kamiński, Z. (2006). Concentrations of Natural 226Ra and 222Rn Radioisotopes in the Water from Deep Well Intakes in the Vicinity of Lódz. Medycyna Pracy, 57, 451-454.

[17]   Kozlowska, B., Hetman, A., & Zipper, W. (1999). Determination of 222Rn in Natural Water Samples from Health Resorts in the Sudety Mountains by the Liquid Scintillation Technique. Applied Radiation and Isotopes, 51, 475-480.

[18]   Lawrence, E. P., Wanty, R. B., & Nyberg, P. (1992). Contribution of 222Rn in Domestic Water Supplies to 222Rn in Indoor Air in Colorado Homes. Health Physics, 62, 171-177.

[19]   Lee, J. M., & Kim, G. (2006). A Simple and Rapid Method for Analyzing Radon in Coastal and Ground Waters Using a Radon-in-Air Monitor. Journal of Environmental Radioactivity, 89, 219-228.

[20]   Lee, K. Y., & Burnett, W. C. (2013). Determination of Air-Loop Volume and Radon Partition Coefficient for Measuring Radon in Water Sample. Journal of Radioanalytical and Nuclear Chemistry, 298, 1359-1365.

[21]   Lucas Fde, O., de Oliveira, I. J., & Ribeiro, F. B. (2009). Development and Calibration of a Portable Radon Sampling System for Groundwater 222Rn Activity Concentration Measurements. Journal of Environmental Radioactivity, 100, 875-883.

[22]   Moldovan, M., Nita, D. C., Cucos-Dinu, A., Dicu, T., Bican-Brisan, N., & Cosma, C. (2014). Radon Concentration in Drinking Water and Supplementary Exposure in Baita-Stei Mining Area, Bihor County (Romania). Radiation Protection Dosimetry, 158, 447-452.

[23]   Mowlavi, A. A., Shahbahrami, A., & Binesh, A. (2009). Dose Evaluation and Measurement of Radon Concentration in Some Drinking Water Sources of the Ramsar Region in Iran. Isotopes in Environmental and Health Studies, 45, 269-272.

[24]   Ongori, J. N., Lindsay, R., & Mvelase, M. J. (2015). Radon Transfer Velocity at the Water-Air Interface. Applied Radiation and Isotopes, 105, 144-149.

[25]   Otwoma, D., & Mustapha, A. O. (1998). Measurement of 222Rn Concentration in Kenyan Groundwater. Health Physics, 74, 91-95.

[26]   Pagava, S., Rusetski, V., Robakidze, Z., Farfán, E. B., Dunker, R. E., Popp, J. L., Avtandilashvili, M., Wells, D. P., & Donnelly, E. H. (2008). Initial Investigation of 222Rn in the Tbilisi Urban Environment. Health Physics, 95, 761-765.

[27]   Satish, L. A., Ramanna, H. C., & Nagesh, V. (2010). Effective Radiation Dose Due to Indoor Radon and Thoron Concentrations in Bangalore City, India. The Arabian Journal of Science and Engineering, 35, 201-208.

[28]   Savidou, A., Sideris, G., & Zouridakis, N. (2001). Radon in Public Water Supplies in Migdonia Basin, Central Macedonia, Northern Greece. Health Physics, 80, 170-174.

[29]   Somashekar, R. K., & Ravikumar, P. (2010). Radon Concentration in Groundwater of Varahi and Markandeya River Basins, Karnataka State, India. Journal of Radioanalytical and Nuclear Chemistry, 285, 343-351.

[30]   Thabayneh, K. M. (2015). Measurement of 222Rn Concentration Levels in Drinking Water and the Associated Health Effects in the Southern Part of West Bank—Palestine. Applied Radiation and Isotopes, 103, 48-53.

[31]   Uzun, S. K., & Demiröz, I. (2016). Radon and Progeny Sourced Dose ASSESSMENT of Spa Employees in Balneological Sites. Radiation Protection Dosimetry, 170, 331-335.

[32]   Vitz, E. (1991). Toward a Standard Method for Determining Waterborne Radon. Health Physics, 60, 817-829.

[33]   Yakut, H., Tabar, E., Zenginerler, Z., Demirci, N., & Ertugral, F. (2013). Measurement of 222Rn Concentration in Drinking Water in Sakarya, Turkey. Radiation Protection Dosimetry, 157, 397-406.