[1] Alexandridis, G., Kavussanos, M.G. and Kim, C.Y. (2018) A Survey of Shipping Finance Research: Setting the Future Research Agenda. Transportation Research Part E: Logistics and Transportation Review, 115, 164-212.
https://doi.org/10.1016/j.tre.2018.04.001
[2] Pérignon, C. and Smith, D. (2010) The Level and Quality of Value-at-Risk Disclosure by Commercial Banks. Journal of Banking & Finance, 34, 362-377.
https://doi.org/10.1016/j.jbankfin.2009.08.009
[3] Chang, C.C., Chou, H.C. and Wu, C.C. (2014) Value-at-Risk Analysis of the Asymmetric Long-Memory Volatility Process of Dry Bulk Freight Rates. Maritime Economics & Logistics, 16, 298-320. https://doi.org/10.1057/mel.2014.13
[4] Cheu, Q., Gerlach, R. and Lu, Z. (2012) Bayesian Value-at-Risk and Expected Shortfall Forecasting via the Asymmetric Laplace Distribution. Computational Statistics and Data Analysis, 56, 3498-3516. https://doi.org/10.1016/j.csda.2010.06.018
[5] Pagan, A. (1996) The Econometrics of Financial Markets. Journal of Empirical Finance, 3, 15-102. https://doi.org/10.1016/0927-5398(95)00020-8
[6] Theodossiou, P. (2001) Skewed Generalized Error Distribution of Financial Assets and Option Pricing. Working Paper, School of Business and Rutgers University, Piscataway.
https://doi.org/10.2139/ssrn.219679
[7] Bollerslev, T. (1987) A Conditional Heteroskedastic Time Series Model for Security Prices and Rates of Return Data. The Review of Economics and Statistics, 69, 542-547.
https://doi.org/10.2307/1925546
[8] Hansen, B.E. (1994) Autoregressive Conditional Density Estimation. International Economic Review, 35, 705-730. https://doi.org/10.2307/2527081
[9] Ferreira, J.T.A.S. and Steel, M.F.J. (2006) A Constructive Representation of Univariate Skewed Distributions. Journal of the American Statistical Association, 101, 823-829.
https://doi.org/10.1198/016214505000001212
[10] Barndorff-Nielsen, O. and Blæsild, P. (1983) Hyperbolic Distributions. In: Johnson, N.L., Kotz, S. and Read, C.B., Eds., Encyclopedia of Statistical Sciences, Vol. 3, Wiley Interscience, New York, 700-707.
[11] Aas, K. and Haff, I.H. (2006) The Generalized Hyperbolic Skew Student’s t-Distribution. Journal of Financial Economics, 4, 275-309. https://doi.org/10.1093/jjfinec/nbj006
[12] Escanciano, J.C. and Pei, P. (2012) Pitfalls in Backtesting Historical Simulation VaR Models. Journal of Banking & Finance, 36, 2233-2244. https://doi.org/10.1016/j.jbankfin.2012.04.004
[13] Kupiec, P. (1995) Techniques for Verifying the Accuracy of Risk Measurement Models. The Journal of Derivatives, 3, 73-84. https://doi.org/10.3905/jod.1995.407942
[14] Christofersen, P. (1998) Evaluating Intervals Forecasts. International Economic Review, 39, 841-862. https://doi.org/10.2307/2527341
[15] Engle, R.F. and Manganelli, S. (2004) CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles. Journal of Business & Economic Statistics, 22, 367-381.
https://doi.org/10.1198/073500104000000370
[16] Dumitrescu, E., Hurlin, C. and Pham, V. (2012) Backtesting Value-at-Risk: From Dynamic Quantile to Dynamic Binary Tests. Finance, 33, 79-112.
[17] Glosten, L.R., Jagannathan, R. and Runkle, D.E. (1993) On the Relation between the Expected Value and the Volatility of Nominal Excess Return on Stocks. Journal of Finance, 48, 1779-1801.
https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
[18] Theodossiou, P. (2015) Skewed Generalized Error Distribution of Financial Assets and Option Pricing. Multinational Finance Journal, 19, 223-266. https://doi.org/10.17578/19-4-1
[19] Lin, C.H., Changchien, C.C., Kao, T.C. and Kao, W.S. (2014) High-Order Moments and Extreme Value Approach for Value-at-Risk. Journal of Empirical Finance, 29, 421-434.
https://doi.org/10.1016/j.jempfin.2014.10.001