Back
 JWARP  Vol.11 No.5 , May 2019
Transport of Phenol in BS-12 Modified Lou Soil in the Column Experiment: Effect of Concentrations, pH and Ionic Strength
Abstract: Lou soil was modified by amphoteric surfactant in column experiment which was conducted. This study attempts to explore the transport of phenol to unmodified and modified soil and inquire into the effect of concentrations, pH, and ionic strength on phenol migration in the soil column. The parameters and breakthrough curves (BTCs) of transport were fitted by using the CXTFIT (version 2.1) model. The result of Cl−’s BTCs for non-reactive by determining the equilibrium model (EM) showed the retardation factor which was smaller than 1. The result of phenol’s BTCs by determining non-equilibrium model (NEM) was shown that the R-value increased while modification ratio increased, and the R was in order of CK (1.337) < 50BS-12 (4.085) < 100BS-12 (7.048). The lower to higher concentration of phenol didn’t affect to CK and 100BS-12 was able to block higher concentration. The effect of pH on transport to CK and 100BS-12 didn’t react and the average pore water velocity was decreased at pH = 4. The decreasing ionic strength of phenol migration on CK and 100BS-12 had effect and the average pore water velocity and retardation factor also decreased. The residual retention in soil was in order of CK < 50BS-12 < 100BS-12, and 100BS-12 could hold the amount of phenol than CK 7.21 times. Thus, amphoteric modified lou soil definitely blocks phenol migration and controls groundwater pollution.
Cite this paper: Yek, S. , Zhang, L. , Meng, Z. , Heng, S. , Bu, S. , Lu, H. and Zhang, M. (2019) Transport of Phenol in BS-12 Modified Lou Soil in the Column Experiment: Effect of Concentrations, pH and Ionic Strength. Journal of Water Resource and Protection, 11, 540-553. doi: 10.4236/jwarp.2019.115031.
References

[1]   George, R., Joy, V., Aiswarya, S., and Jacob, P.A. (2014) Treatment Methods for Contaminated Soils—Translating Science into Practice. International Journal of Education and Applied Research, 4, 17-19.

[2]   Arcibar-Orozco, J.A., Rangel-Mendez, J.R. and Diaz-Flores, P.E. (2014) Simultaneous Adsorption of Pb(Ii)-Cd(Ii), Pb(Ii)-Phenol, and Cd(Ii)-Phenol by Activated Carbon Cloth in Aqueous Solution. Water, Air, & Soil Pollution, 226, Article ID: 2197.
https://doi.org/10.1007/s11270-014-2197-1

[3]   Lin, S.-H. and Juang, R.-S. (2009) Adsorption of Phenol and Its Derivatives from Water Using Synthetic Resins and Low-Cost Natural Adsorbents: A Review. Journal of Environmental Management, 90, 1336-1349.
https://doi.org/10.1016/j.jenvman.2008.09.003

[4]   Banat, F.A., Al-Bashir, B., Al-Asheh, S. and Hayajneh, O. (2000) Adsorption of Phenol by Bentonite. Environmental Pollution, 107, 391-398.
https://doi.org/10.1016/S0269-7491(99)00173-6

[5]   Bachir, M., Salah, M.M., El-fala, B.Z. and Soulard, M. (2014) Conférence International des Sciences des Matériaux (CSM 8) Beyrouth (Liban) Possibility of Adsorption of Phenols on One Natural Bentonite. Physics Procedia, 55, 356-366.
https://doi.org/10.1016/j.phpro.2014.07.052

[6]   Boyd, S.A., Lee, J.-F. and Mortland, M.M. (1988) Attenuating Organic Contaminant Mobility by Soil Modification. Nature, 333, 345-347.
https://doi.org/10.1038/333345a0

[7]   Gao, B., Wang, X., Zhao, J. and Sheng, G. (2001) Sorption and Cosorption of Organic Contaminant on Surfactant-Modified Soils. Chemosphere, 43, 1095-1102.
https://doi.org/10.1016/S0045-6535(00)00187-9

[8]   Meng, Z., Zhang, Y. and Li, R. (2005) Effects of Modification of Manural Loessial Soil by Adding Organic Compounds on Phenol Adsorption and Its Thermodynamic Characteristics. Acta Scientiae Circumstantiae, 25, 1365-1372.

[9]   Meng, Z.-F., Zhang, Y.-P. and Guo, Z. (2008) Surface Characteristics of Organic Modified Soil I CEC and Specific Surface Area. Acta Pedologica Sinica, 45, 370-374.

[10]   Zhou, W., Zhu, K., Zhan, H., Jiang, M. and Chen, H. (2003) Sorption Behaviors of Aromatic Anions on Loess Soil Modified with Cationic Surfactant. Journal of Hazardous Materials, 100, 209-218.
https://doi.org/10.1016/S0304-3894(03)00112-2

[11]   Meng, Z.-F., Zhang, Y.-P. and Zhang, Z.-Q. (2008) Simultaneous Adsorption of Phenol and Cadmium on Amphoteric Modified Soil. Journal of Hazard Mater, 159, 492-498.
https://doi.org/10.1016/j.jhazmat.2008.02.045

[12]   Bai, J.-F., Meng, Z.-F., Liu, Y.-H., Qin, P.-X., Zheng, P.-Y., Xun, L.-L. and Guo, C.-H. (2010) Adsorption of Phenol on Amphoteric-Cationic Modified Lou Soil. China Environmental Science, 10, 1389-1394.

[13]   Adhikari, K., Pal, S., Chakraborty, B., Mukherjee, S.N. and Gangopadhyay, A. (2014) Assessment of Phenol Infiltration Resilience in Soil Media by HYDRUS-1D Transport Model for a Waste Discharge Site. Environmental Monitoring and Assessment, 186, 6417-6432.
https://doi.org/10.1007/s10661-014-3864-9

[14]   Pal, S., Mukherjee, S. and Ghosh, S. (2014) Application of HYDRUS 1D Model for Assessment of Phenol—Soil Adsorption Dynamics. Environmental Science and Pollution Research, 21, 5249-5261.
https://doi.org/10.1007/s11356-013-2467-2

[15]   Huang, S., Zhang, R., Zhang, J. and Pan, R. (2009) Effects of pH and Soil Texture on the Adsorption and Transport of Cd in Soils. Science in China Series E: Technological Sciences, 52, 3293-3299.
https://doi.org/10.1007/s11431-009-0348-1

[16]   Chotpantarat, S., Ong, S.K., Sutthirat, C. and Osathaphan, K. (2011) Effect of pH on Transport of Pb2+, Mn2+, Zn2+ and Ni2+ through Lateritic Soil: Column Experiments and Transport Modeling. Journal of Environmental Sciences, 23, 640-648.
https://doi.org/10.1016/S1001-0742(10)60417-2

[17]   Zhang, X., Tong, J., Hu, B.-X. and Wei, W. (2017) Adsorption and Desorption for Dynamics Transport of Hexavalent Chromium (Cr(VI)) in Soil Column. Environmental Science and Pollution Research, 25, 459-468.
https://doi.org/10.1007/s11356-017-0263-0

[18]   Di, X., Meng, Z.-F., Yang, S., Cui, X., Xiang, W., Ren, W., Yang, Y.-L., Li, W.-B. and Wu, Q. (2015) Soil Organic Polluted Matter Phenol Migration Characteristics in Modified Loessial Soil. Transactions of the Chinese Society of Agricultural Engineering, 31, 249-255.

[19]   Toride, N., Leij, F.J. and van Genuchten, M.T. (1995) The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments. U.S. Salinity Laboratory Agricultural Research Service. U.S. Department of Agriculture, Riverside, CA.

[20]   Simunek, J., van Genuchten, M.T., Sejna, M., Toride, N. and Leij, F.J. (1999) The Stanmod Computer Software for Evaluating Solute Transport in Porous Media Using Analytical Solutions of Convection-Dispersion Equation. U.S. Salinity Laboratory, U.S. Salinity Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Riverside, CA, 4-10.

[21]   Chotpantarat, S., Ong, S.K., Sutthirat, C. and Osathaphan, K. (2012) Competitive Modeling of Sorption and Transport of Pb2+, Ni2+, Mn2+ and Zn2+ under Binary and Multi-Metal Systems in Lateritic Soil Columns. Geoderma, 189-190, 278-287.
https://doi.org/10.1016/j.geoderma.2012.06.032

[22]   Fonseca, B., Teixeira, A., Figueiredo, H. and Tavares, T. (2009) Modelling of the Cr(VI) Transport in Typical Soils of the North of Portugal. Journal of Hazard Mater, 167, 756-762.
https://doi.org/10.1016/j.jhazmat.2009.01.049

[23]   Yang, H.-N., Meng, Z.-F., and Yang, F. (2009) Cd2+ Transport in Amphoteric Modified Lou Soil. Chinese Journal of Soil Science, 40, 400-405.

[24]   Meng, Z.-F., Zhang, Y.-P. and Wang, G.-D. (2007) Sorption of Heavy Metal and Organic Pollutants on Modified Soils. Pedosphere, 17, 235-245.
https://doi.org/10.1016/S1002-0160(07)60030-7

[25]   Chen, Y.-X., Chen, H.-L., Xu, Y.-T. and Shen, M.-W. (2004) Irreversible Sorption of Pentachlorophenol to Sediments: Experimental Observations. Environment International, 30, 31-37.
https://doi.org/10.1016/S0160-4120(03)00145-4

[26]   Woignier, T., Fernandes, P., Soler, A., Clostre, F., Carles, C., Rangon, L. and Lesueur-Jannoyer, M. (2013) Soil Microstructure and Organic Matter: Keys for Chlordecone Sequestration. Journal of Hazard Mater, 262, 357-364.
https://doi.org/10.1016/j.jhazmat.2013.08.070

[27]   Al-Asheh, S., Banat, F. and Abu-Aitah, L. (2003) Adsorption of Phenol Using Different Types of Activated Bentonites. Separation and Purification Technology, 33, 1-10.
https://doi.org/10.1016/S1383-5866(02)00180-6

[28]   Zhang, Y.-L., Lin, S.-S., Dai, C.-M., Shi, L. and Zhou, X.-F. (2014) Sorption-Desorption and Transport of Trimethoprim and Sulfonamide Antibiotics in Agricultural Soil: Effect of Soil Type, Dissolved Organic Matter, and pH. Environmental Science and Pollution Research, 21, 5827-5835.
https://doi.org/10.1007/s11356-014-2493-8

[29]   Wang, S., Hu, J., Li, J. and Dong, Y. (2009) Influence of pH, Soil Humic/Fulvic Acid, Ionic Strength, Foreign Ions and Addition Sequences on Adsorption of Pb(II) onto GMZ Bentonite. Journal of Hazard Mater, 167, 44-51.
https://doi.org/10.1016/j.jhazmat.2008.12.079

[30]   Chang, P., Yu, S., Chen, T., Ren, A., Chen, C. and Wang, X. (2008) Effect of pH, Ionic Strength, Fulvic Acid and Humic Acid on Sorption of Th(IV) on Na-Rectorite. Journal of Radioanalytical and Nuclear Chemistry, 274, 153-160.
https://doi.org/10.1007/s10967-006-6865-5

[31]   Wang, T., Liu, W., Xiong, L., Xu, N. and Ni, J. (2013) Influence of pH, Ionic Strength and Humic Acid on Competitive Adsorption of Pb(II), Cd(II) and Cr(III) onto Titanate Nanotubes. Chemical Engineering Journal, 215-216, 366-374.
https://doi.org/10.1016/j.cej.2012.11.029

[32]   He, S., Li, Y., Weng, L., Wang, J., He, J., Liu, Y., Zhang, K., Wu, Q., Zhang, Y. and Zhang, Z. (2018) Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-Modified Argillaceous Limestone: Influence of pH, Ionic Strength and Natural Organic Matters. Science of the Total Environment, 637-638, 69-78.
https://doi.org/10.1016/j.scitotenv.2018.04.300

[33]   Zeng, F., He, Y., Lian, Z. and Xu, J. (2014) The Impact of Solution Chemistry of Electrolyte on the Sorption of Pentachlorophenol and Phenanthrene by Natural Hematite Nanoparticles. Science of the Total Environment, 466-467, 577-585.
https://doi.org/10.1016/j.scitotenv.2013.07.072

 
 
Top