[1] George, R., Joy, V., Aiswarya, S., and Jacob, P.A. (2014) Treatment Methods for Contaminated Soils—Translating Science into Practice. International Journal of Education and Applied Research, 4, 17-19.
[2] Arcibar-Orozco, J.A., Rangel-Mendez, J.R. and Diaz-Flores, P.E. (2014) Simultaneous Adsorption of Pb(Ii)-Cd(Ii), Pb(Ii)-Phenol, and Cd(Ii)-Phenol by Activated Carbon Cloth in Aqueous Solution. Water, Air, & Soil Pollution, 226, Article ID: 2197.
https://doi.org/10.1007/s11270-014-2197-1
[3] Lin, S.-H. and Juang, R.-S. (2009) Adsorption of Phenol and Its Derivatives from Water Using Synthetic Resins and Low-Cost Natural Adsorbents: A Review. Journal of Environmental Management, 90, 1336-1349.
https://doi.org/10.1016/j.jenvman.2008.09.003
[4] Banat, F.A., Al-Bashir, B., Al-Asheh, S. and Hayajneh, O. (2000) Adsorption of Phenol by Bentonite. Environmental Pollution, 107, 391-398.
https://doi.org/10.1016/S0269-7491(99)00173-6
[5] Bachir, M., Salah, M.M., El-fala, B.Z. and Soulard, M. (2014) Conférence International des Sciences des Matériaux (CSM 8) Beyrouth (Liban) Possibility of Adsorption of Phenols on One Natural Bentonite. Physics Procedia, 55, 356-366.
https://doi.org/10.1016/j.phpro.2014.07.052
[6] Boyd, S.A., Lee, J.-F. and Mortland, M.M. (1988) Attenuating Organic Contaminant Mobility by Soil Modification. Nature, 333, 345-347.
https://doi.org/10.1038/333345a0
[7] Gao, B., Wang, X., Zhao, J. and Sheng, G. (2001) Sorption and Cosorption of Organic Contaminant on Surfactant-Modified Soils. Chemosphere, 43, 1095-1102.
https://doi.org/10.1016/S0045-6535(00)00187-9
[8] Meng, Z., Zhang, Y. and Li, R. (2005) Effects of Modification of Manural Loessial Soil by Adding Organic Compounds on Phenol Adsorption and Its Thermodynamic Characteristics. Acta Scientiae Circumstantiae, 25, 1365-1372.
[9] Meng, Z.-F., Zhang, Y.-P. and Guo, Z. (2008) Surface Characteristics of Organic Modified Soil I CEC and Specific Surface Area. Acta Pedologica Sinica, 45, 370-374.
[10] Zhou, W., Zhu, K., Zhan, H., Jiang, M. and Chen, H. (2003) Sorption Behaviors of Aromatic Anions on Loess Soil Modified with Cationic Surfactant. Journal of Hazardous Materials, 100, 209-218.
https://doi.org/10.1016/S0304-3894(03)00112-2
[11] Meng, Z.-F., Zhang, Y.-P. and Zhang, Z.-Q. (2008) Simultaneous Adsorption of Phenol and Cadmium on Amphoteric Modified Soil. Journal of Hazard Mater, 159, 492-498.
https://doi.org/10.1016/j.jhazmat.2008.02.045
[12] Bai, J.-F., Meng, Z.-F., Liu, Y.-H., Qin, P.-X., Zheng, P.-Y., Xun, L.-L. and Guo, C.-H. (2010) Adsorption of Phenol on Amphoteric-Cationic Modified Lou Soil. China Environmental Science, 10, 1389-1394.
[13] Adhikari, K., Pal, S., Chakraborty, B., Mukherjee, S.N. and Gangopadhyay, A. (2014) Assessment of Phenol Infiltration Resilience in Soil Media by HYDRUS-1D Transport Model for a Waste Discharge Site. Environmental Monitoring and Assessment, 186, 6417-6432.
https://doi.org/10.1007/s10661-014-3864-9
[14] Pal, S., Mukherjee, S. and Ghosh, S. (2014) Application of HYDRUS 1D Model for Assessment of Phenol—Soil Adsorption Dynamics. Environmental Science and Pollution Research, 21, 5249-5261.
https://doi.org/10.1007/s11356-013-2467-2
[15] Huang, S., Zhang, R., Zhang, J. and Pan, R. (2009) Effects of pH and Soil Texture on the Adsorption and Transport of Cd in Soils. Science in China Series E: Technological Sciences, 52, 3293-3299.
https://doi.org/10.1007/s11431-009-0348-1
[16] Chotpantarat, S., Ong, S.K., Sutthirat, C. and Osathaphan, K. (2011) Effect of pH on Transport of Pb2+, Mn2+, Zn2+ and Ni2+ through Lateritic Soil: Column Experiments and Transport Modeling. Journal of Environmental Sciences, 23, 640-648.
https://doi.org/10.1016/S1001-0742(10)60417-2
[17] Zhang, X., Tong, J., Hu, B.-X. and Wei, W. (2017) Adsorption and Desorption for Dynamics Transport of Hexavalent Chromium (Cr(VI)) in Soil Column. Environmental Science and Pollution Research, 25, 459-468.
https://doi.org/10.1007/s11356-017-0263-0
[18] Di, X., Meng, Z.-F., Yang, S., Cui, X., Xiang, W., Ren, W., Yang, Y.-L., Li, W.-B. and Wu, Q. (2015) Soil Organic Polluted Matter Phenol Migration Characteristics in Modified Loessial Soil. Transactions of the Chinese Society of Agricultural Engineering, 31, 249-255.
[19] Toride, N., Leij, F.J. and van Genuchten, M.T. (1995) The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments. U.S. Salinity Laboratory Agricultural Research Service. U.S. Department of Agriculture, Riverside, CA.
[20] Simunek, J., van Genuchten, M.T., Sejna, M., Toride, N. and Leij, F.J. (1999) The Stanmod Computer Software for Evaluating Solute Transport in Porous Media Using Analytical Solutions of Convection-Dispersion Equation. U.S. Salinity Laboratory, U.S. Salinity Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Riverside, CA, 4-10.
[21] Chotpantarat, S., Ong, S.K., Sutthirat, C. and Osathaphan, K. (2012) Competitive Modeling of Sorption and Transport of Pb2+, Ni2+, Mn2+ and Zn2+ under Binary and Multi-Metal Systems in Lateritic Soil Columns. Geoderma, 189-190, 278-287.
https://doi.org/10.1016/j.geoderma.2012.06.032
[22] Fonseca, B., Teixeira, A., Figueiredo, H. and Tavares, T. (2009) Modelling of the Cr(VI) Transport in Typical Soils of the North of Portugal. Journal of Hazard Mater, 167, 756-762.
https://doi.org/10.1016/j.jhazmat.2009.01.049
[23] Yang, H.-N., Meng, Z.-F., and Yang, F. (2009) Cd2+ Transport in Amphoteric Modified Lou Soil. Chinese Journal of Soil Science, 40, 400-405.
[24] Meng, Z.-F., Zhang, Y.-P. and Wang, G.-D. (2007) Sorption of Heavy Metal and Organic Pollutants on Modified Soils. Pedosphere, 17, 235-245.
https://doi.org/10.1016/S1002-0160(07)60030-7
[25] Chen, Y.-X., Chen, H.-L., Xu, Y.-T. and Shen, M.-W. (2004) Irreversible Sorption of Pentachlorophenol to Sediments: Experimental Observations. Environment International, 30, 31-37.
https://doi.org/10.1016/S0160-4120(03)00145-4
[26] Woignier, T., Fernandes, P., Soler, A., Clostre, F., Carles, C., Rangon, L. and Lesueur-Jannoyer, M. (2013) Soil Microstructure and Organic Matter: Keys for Chlordecone Sequestration. Journal of Hazard Mater, 262, 357-364.
https://doi.org/10.1016/j.jhazmat.2013.08.070
[27] Al-Asheh, S., Banat, F. and Abu-Aitah, L. (2003) Adsorption of Phenol Using Different Types of Activated Bentonites. Separation and Purification Technology, 33, 1-10.
https://doi.org/10.1016/S1383-5866(02)00180-6
[28] Zhang, Y.-L., Lin, S.-S., Dai, C.-M., Shi, L. and Zhou, X.-F. (2014) Sorption-Desorption and Transport of Trimethoprim and Sulfonamide Antibiotics in Agricultural Soil: Effect of Soil Type, Dissolved Organic Matter, and pH. Environmental Science and Pollution Research, 21, 5827-5835.
https://doi.org/10.1007/s11356-014-2493-8
[29] Wang, S., Hu, J., Li, J. and Dong, Y. (2009) Influence of pH, Soil Humic/Fulvic Acid, Ionic Strength, Foreign Ions and Addition Sequences on Adsorption of Pb(II) onto GMZ Bentonite. Journal of Hazard Mater, 167, 44-51.
https://doi.org/10.1016/j.jhazmat.2008.12.079
[30] Chang, P., Yu, S., Chen, T., Ren, A., Chen, C. and Wang, X. (2008) Effect of pH, Ionic Strength, Fulvic Acid and Humic Acid on Sorption of Th(IV) on Na-Rectorite. Journal of Radioanalytical and Nuclear Chemistry, 274, 153-160.
https://doi.org/10.1007/s10967-006-6865-5
[31] Wang, T., Liu, W., Xiong, L., Xu, N. and Ni, J. (2013) Influence of pH, Ionic Strength and Humic Acid on Competitive Adsorption of Pb(II), Cd(II) and Cr(III) onto Titanate Nanotubes. Chemical Engineering Journal, 215-216, 366-374.
https://doi.org/10.1016/j.cej.2012.11.029
[32] He, S., Li, Y., Weng, L., Wang, J., He, J., Liu, Y., Zhang, K., Wu, Q., Zhang, Y. and Zhang, Z. (2018) Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-Modified Argillaceous Limestone: Influence of pH, Ionic Strength and Natural Organic Matters. Science of the Total Environment, 637-638, 69-78.
https://doi.org/10.1016/j.scitotenv.2018.04.300
[33] Zeng, F., He, Y., Lian, Z. and Xu, J. (2014) The Impact of Solution Chemistry of Electrolyte on the Sorption of Pentachlorophenol and Phenanthrene by Natural Hematite Nanoparticles. Science of the Total Environment, 466-467, 577-585.
https://doi.org/10.1016/j.scitotenv.2013.07.072