Health  Vol.1 No.3 , November 2009
Implant-related MRI artifacts of determined interbody test spacers: artifact calculations due to implant parameters in a porcine spine model
ABSTRACT
Aim: Intervertebral spacers for anterior spine fusion are made of different materials, which can affect the post-fusion MRI scans. Suscep- tibility artifacts specially for implants made of titanium alloys can decrease the image quality. This study focused on the influence of deter-mined implant parameters like shape and implant volume in MRI artifacting independent from se-lected MRI-sequences. Methods: In this study the post-implantation MRI scans of determined cuboids and cylinders were evaluated. All in-terbody test implants were made of titanium alloys. MRI scans were carried out by using T1 TSE sequences. The total artifact volume (TAV) of all examined implants were calculated for sta-tistical t-test correlation and implant volume (IV)/TAV-relation. Results: Considering all ex-amined test implants with an increasing implant size the TAV became significant larger (p<0,001) with simultaneous reduction of the respective IV/TAV-relation. According to an intergroup TAV- correlation for cylinders and cuboids with an equivalent implant volume the cylindric test im-plants demonstrated a significant smaller arti-fact range (p<0,05). Conclusions: Based on these results the MRI artifacts of larger test im-plants were more limited to the to the implant’s direct surroundings. In this connection for im- plants with identical material volumes a cylin- dric shape demonstrated more advantages con- sidering MRI artifacting than cubic forms.

Cite this paper
nullErnstberger, T. (2009) Implant-related MRI artifacts of determined interbody test spacers: artifact calculations due to implant parameters in a porcine spine model. Health, 1, 207-210. doi: 10.4236/health.2009.13035.
References
[1]   J. W. Van Goethem, P. M. Parizel, J. R. Jinkins, (2002) Review article: MRI of the postoperative lumbar spine. Neuroradiology, 44, 723-39.

[2]   C. Fellner, M. Behr, F. Fellner, P. Held, G. Handel, S. Feuerbach, (1997). Artifacts in MR imaging of the tem-poromandibular joint caused by dental alloys: A phantom model study at T1.5. Rofo, 166,421-8.

[3]   S. Fritzsche, R. Thull, A. Haase, (1994) Reduction of artifacts in magnetic resonance images by using optimized materials for diagnostic devices and implants. Biomed Tech (Berl), 39, 42-6.

[4]   J. F. Schenck, (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys, 23, 815-50.

[5]   A. S. Malik, O. Boyko, N. Atkar, W. F. Young, (2001) A comparative study of MR imaging profile of titanium pedicle screws. Acta Radiol, 42, 291-3.

[6]   C. A. Petersilge, J. S. Lewin, J. L. Duerk, J. U. Yoo, A. J. Ghaneyem, (1996) Optimizing imaging parameters for MR evaluation of the spine with titanium pedicle screws. AJR Am J Roentenol, 166, 1213-8.

[7]   A. Rudisch, C. Kremser, S. Peer, A. Kathrein, W. Jud-maier, H. Daniaux, (1998) Metallic artifacts in magnetic resonace imaging of patients with spinal fusion. A com-parison of implant materials and implant sequences. Spine, 23, 692-9.

[8]   R. Rupp, N. A. Ebraheim, E. R. Savolaine, W. T. Jackson, (1993) Magnetic resonance imaging evaluation of the spine with metal implants. General safety and superior imaging with titanium. Spine, 18, 379-85.

[9]   M. Thomsen, U. Schneider, S. J. Breusch, J. Hansmann, M. Freund, (2001) Artefacts and ferromagnetism dependent on different metal alloys in magnetic resonance imaging. An experimental study. Orthopade, 30, 40-4.

[10]   J. C. Wang, H. S. Sandhu, M. D. Yu, J. T. Minchew, R. B. Delamarter, (1997) MR parameters for imaging titanium spinal instrumentation. J Spinal Disord, 10, 27-32

[11]   A. R. Vaccaro, R. M. Chesnut, G. Scuderi, J. F. Healy, J. B. Massie, S. R. Garfin, (1994) Metallic spinal artifacts in magnetic resonance imaging. Spine, 19, 1237-42.

[12]   J. C. Wang, W. D. Yu, H. S. Sandhu, V. Tam, R. B. Delamarter, (1998) A comparison of magnetic resonance and computed tomographic image quality after the implan- tation of tantalum and titanium spinal instrumentation. Spine, 23, 1684-8.

[13]   C. B. Henk, W. Brodner, S. Grampp, M. Breitenseher, M. Thurnher, G. H. Mostbeck, H. Imhof, (1999) The postop-erative spine. Top Magn Reson Imaging, 10, 247-64.

[14]   T. Herold, W. C. Caro, G. Heers, L. Perlick, J. Grifka, S. Feuerbach, W. Nitz, M .Lenhart, (2004) Influence of se-quence type on the extent of the susceptility artifact in MRI- a shoulder specimen study after suture anchor repair. Rofo, 176, 1296-301.

[15]   J. F. Debatin, S. N. Nadel, H. D. Sostman, C. E. Spritzer, A. J. Evans, T. M. Grist, (1992) Magnetic resonance imaging cardiac ejection fraction measurements. Phantom study comparing four different methods. Invest Radiol, 27, 198- 204.

[16]   B. N. Summers and S. M. Eisenstein, (1989) Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br, 71, 677-80.

[17]   J. A. Goulet, L. E. Senunas, G. L. DeSilva, M. L. Green- field, (1997) Autogenous iliac crest bone graft. Complica- tions and functional assessment. Clin Orthop, 339, 76-81.

[18]   T. Ernstberger, G. Heidrich, T. Bruning, S. Krefft, G. Buchhorn, H. M. Klinger, (2007) The inter-observer vali- dated relevance of intervertebral spacer materials in MRI artifacting. Eur Spine J, 16, 179-85.

 
 
Top