JAMP  Vol.7 No.5 , May 2019
Relationship between the Sunspot Number and Solar Polar Field by Wavelet-Based Multifractal Analysis
There is increasing interest in finding the relation between the sunspot number (SSN) and solar polar field. In general, fractal properties may be observed in the time series of the dynamics of complex systems, such as solar activity and climate. This study investigated the relations between the SSN and solar polar field by performing a multifractal analysis. To investigate the change in multifractality, we applied a wavelet transform to time series. When the SSN was maximum and minimum, the SSN showed monofractality or weak multifractality. The solar polar field showed weak multifractality when that was maximum and minimum. When the SSN became maximum, the fractality of the SSN changed from multifractality to monofractality. The multifractality of SSN became large before two years of SSN maximum, then that of the solar polar field became large and changed largely. It was found that the change in SSN triggered the change in the solar polar field. Hence, the SSN and solar polar field were closely correlated from the view point of fractals. When the maximum solar polar field before the maximum SSN was larger, the maximum SSN of the next cycle was larger. The formation of the magnetic field of the sunspots was correlated with the solar polar field.
Cite this paper: Maruyama, F. (2019) Relationship between the Sunspot Number and Solar Polar Field by Wavelet-Based Multifractal Analysis. Journal of Applied Mathematics and Physics, 7, 1043-1051. doi: 10.4236/jamp.2019.75070.

[1]   Svensson, C., Olsson, J. and Berndtsson, R. (1996) Multifractal Properties of Daily Rainfall in Two Different Climates. Water Resources Research, 32, 2463-2472.

[2]   Ivanov, P.Ch., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Struzikk, Z.R. and Stanley, H.E. (1999) Multifractality in Human Heartbeat Dynamics. Nature, 399, 461-465.

[3]   Cliver, E.W., Boriakoff, V. and Feynman, J. (1998) Geomagnetic Activity and the Solar Wind during the Maunder Minimum. Geophysical Research Letters, 25, 897-900.

[4]   Cliver, E.W., Boriakoff, V. and Feynman, J. (1998) Solar Variability and Climate Change: Geomagnetic aa Index and Global Surface Temperature. Geophysical Research Letters, 25, 1035-1038.

[5]   Kane, R.P. (2002) Evolution of Geomagnetic aa Index near Sunspot Minimum. Annales Geophysicae, 20, 1519-1527.

[6]   Kane, R.P. (2002) Prediction of Solar Activity: Role of Long-Term Variations. Journal of Geophysical Research, 107, Article ID: 1113.

[7]   Bucha, V. and Bucha Jr., V. (1998) Geomagnetic Forcing of Changes in Climate and in the Atmospheric Circulation. Journal of Atmospheric and Solar-Terrestrial Physics, 60, 145-169.

[8]   Muzy, J.F., Bacry, E. and Arneodo, A. (1991) Wavelets and Multifractal Formalism for Singular Signals: Application to Turbulence Data. Physical Review Letters, 67, 3515-3518.

[9]   Frish, U. and Parisi, G. (1985) On the Singularity Structure of Fully Developed Turbulence. In: Ghil, M., Benzi, R. and Parisi, G., Eds., Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, North-Holland, New York, 84-88.

[10]   Ioshpa, B.A., Obridko, V.N. and Rudenchik, E.A. (2008) Fractal Properties of Solar Magnetic Fields. Astronomy Letters, 34, 210-216.

[11]   Maruyama, F., Kai, K. and Morimoto, H. (2015) Wavelet-Based Multifractal Analysis on Climatic Regime Shifts. Journal of the Meteorological Society of Japan, 93, 331-341.

[12]   Svalgaard, L. and Kamide, Y. (2005) Sunspot Cycle 24: Smallest Cycle in 100 Years? Geophysical Research Letter, 32, Article ID: L01104.

[13]   Upton, L. and Hathaway, D.H. (2014) Predicting the Sun’s Polar Magnetic Fields with a Surface Flux Transport Model. The Astrophysical Journal, 780, Article ID: 5.