JEP  Vol.2 No.10 , December 2011
Utilization of Agro-Industrial Residues and Municipal Waste of Plant Origin for Cellulosic Ethanol Production
ABSTRACT
Today’s search for alternative sources of energy to reduce the use of fossil fuels is motivated by environmental, socioeconomic and political reasons. The use of agro-industrial and municipal wastes of plant origin for ethanol production appears to be the best option to solve the dilemma of using food sources to produce biofuels, since it adds value to these wastes in eco-efficient processes. This paper highlights the potential of agro-industrial and municipal wastes for cellulosic ethanol production.

Cite this paper
nullF. Gonçalves, E. Sanjinez-Argandoña and G. Fonseca, "Utilization of Agro-Industrial Residues and Municipal Waste of Plant Origin for Cellulosic Ethanol Production," Journal of Environmental Protection, Vol. 2 No. 10, 2011, pp. 1303-1309. doi: 10.4236/jep.2011.210150.
References
[1]   London Stock Exchange, “Oilb Etfs Oil Securities ld Etfs Brent Oil,” 2011. http://www.londonstockexchange.com/exchange/prices-and-markets/ETCs/company-summary.html?fourWayKey=GB00B0CTWC01JEUSDETCS

[2]   S. Prasad, A. Singh and H. C. Joshi, “Ethanol as an Alter- native Fuel from Agricultural, Industrial and Urban Resi- dues,” Resources, Conservation and Recycling, Vol. 50, 2007, pp. 1-39. doi:10.1016/j.resconrec.2006.05.007

[3]   Y. Sun and J. Cheng, “Hydrolysis of Lignocellulosic Ma- terials for Ethanol Production: A Review,” Bioresource Technology, Vol. 83, No. 1, 2002, pp. 1-11. doi:10.1016/S0960-8524(01)00212-7

[4]   A. Abril, “Etanol Aditivo o Alternativa Para el Combustible Automotor,” I Taller Nacional de Etanol Celulósico, ICIDCA, Habana, 2008.

[5]   D. Abril and A. Abril, “Ethanol from Lignocellulosic Bio- mass,” Ciencia e Investigación Agrária, Vol. 36, No. 2, 2009, pp. 177-190. doi:10.4067/S0718-16202009000200003

[6]   B. C. Qi, C. Aldrich, L. Lorenzen and G. W. Wolfaardt, “Acidogenic Fermentation of Lignocellulosic Substrate with Activated Sludge,” Chemical Engineering Communi- cations, Vol. 192, No. 9, 2005, pp. 1221-1242. doi:10.1080/009864490515676

[7]   A. Roig, M. L. Cayuela and M. A. Sánchez-Monedero, “An Overview on Olive Mill Wastes and Their Valorization Methods,” Waste Management, Vol. 26, No. 9, 2006, pp. 960-969. doi:10.1016/j.wasman.2005.07.024

[8]   G. Rodríguez, A. Lama, R. Rodríguez, A. Jiménez, R. Guilléna and J. Fernández-Bola?os, “Olive Stone an At- tractive Source of Bioactive and Valuable Compounds,” Bioresource Technology, Vol. 99, No. 13, 2008, pp. 5261- 5269. doi:10.1016/j.biortech.2007.11.027

[9]   A. Z. Shi, L. P. Koh and H. T. W. Tan, “The Biofuel Po- tential of Municipal Solid Waste,” Global Change Biology Bioenergy, Vol. 1, No. 5, 2009, pp. 317-320. doi:10.1111/j.1757-1707.2009.01024.x

[10]   M. F. Demirbas, M. Balat and H. Balat, “Biowastes-to- Biofuels,” Energy Conversion and Management, Vol. 52, No. 4, 2011, pp. 1815-1828. doi:10.1016/j.enconman.2010.10.041

[11]   E. Billa, B. Monties and C. Choudens, “Silica and Phenolic Acid Derivatives in Wheat Straw and Corresponding High Yield Pulps,” Conference Proceedings: Straw—A Valuable Raw Material, Cirencester, 1993, pp. 20-22.

[12]   M. S. Buckeridge, G. B. Silva and A. A. Cavalari, “Parede Celular,” In: G. B. Kerbauy, Ed., Fisiologia Vegetal, Guanabara Koogan, Rio de Janeiro, 2008, pp. 165-181.

[13]   R. Wightman and S. Turner, “Trafficking of the Plant Cellulose Synthase Complex,” Plant Physiology, Vol. 153, No. 2, 2010, pp. 427-432. doi:10.1104/pp.110.154666

[14]   D. Fengel and G. Wegener, “Wood Chemistry, Ultrastructure and Reactions,” 1st Edition, Walter de Gruyter, Berlin, 1989.

[15]   R. P. de Vries and J. Visser, “Aspergillus Enzymes In- volved in Degradation of Plant Cell Wall Polysaccharides,” Microbiology Molecular Biology Reviews, Vol. 65, No. 4, 2001, pp. 497-522. doi:10.1128/MMBR.65.4.497-522.2001

[16]   M. Matulova, R. Nouaille, P. Capek, M. Péan, E. Forano and A. M. Delort, “Degradation of Wheat Straw by Fibro- bacter Succinogenes S85: a Liquid- and Solid-State Nuclear Magnetic Resonance Study,” Applied and Environmental Microbiology, Vol. 71, No. 3, 2005, pp. 1247-1253. doi:10.1128/AEM.71.3.1247-1253.2005

[17]   C. E. Wyman, S. R. Decker, M. E. Himmel, J. W. Brady, C. E. Skopec and L. Viikari, “Polysaccharides: Structural Diversity and Functional Versatility,” S. Dumitriu, Ed., Dekker, New York, 2005, pp. 995-1033.

[18]   D. L. Klass, “Biomass for Renewable Energy, Fuels and Chemicals,” 1st Edition, Academic Press, San Diego, 1998.

[19]   R. M. Brown Jr., “Cellulose Structure and Biosynthesis,” Pure and Applied Chemistry, Vol. 71, No. 5, 1999, pp. 767-775. doi:10.1351/pac199971050767

[20]   B. Barl, C. G. Biliaderis, D. M. Murray and A. W. Mac- gregor, “Combined Chemical and Enzymatic Treatments of Corn Husk Lignocellulosics,” Journal Science Food and Agriculture, Vol. 56, No. 2, 1991, pp. 195-214. doi:10.1002/jsfa.2740560209

[21]   A. Wiselogel, J. Tyson and D. Johnsson, “Biomass Feed- Stock Resources and Composition,” In: C. E. Wyman, Ed., Handbook on Bioethanol: Production and Utilization, Taylor and Francis, Washington DC, 1996, p. 105.

[22]   M. Galbe and G. Zacchi, “Simulation Processes for Con- version of Lignocelluloses,” In: J. N. Saddler, Ed., Bio- conversion of Forest and Agricultural Plant Residues, CAB International, Wallinford, 1993, pp. 291-319.

[23]   M. Galbe, M. Larsson, K. Stemberg, C. Tenborg and G. Zacchi, “Ethanol from Wood: Design and Operation of a Process Development Unit for Technoeconomic Process Evaluation,” ACS Symposium Series 666, American Che- mical Society, Washington DC, 1997, pp. 110-129.

[24]   J. D. McMillan, “Bioethanol Production: Status and Pros- pects,” Renewable Energy, Vol. 10, No. 2-3, 1997, pp. 295-302. doi:10.1016/0960-1481(96)00081-X

[25]   B. Hahn-H?gerdal, M. Galbe, M. F. Gorwa-Grauslund, G. Lidén and G. Zacchi, “Bio-Ethanol: The Fuel of Tomorrow from the residues of Today,” Trends in Biotechnology, Vol. 24, No. 12, 2006, pp. 449-556. doi:10.1016/j.tibtech.2006.10.004

[26]   D. Pimentel, A. Marklein, M. A. Toth, M. Karpoff, G. S. Paul and R. McCormack, “Food versus Biofuels: Envi- ronmental and Economic Costs,” Human Ecology, Vol. 37, 2009, pp. 1-12. doi:10.1007/s10745-009-9215-8

[27]   S. Z. Li and C. Chan-Halbrendt, “Ethanol Production in (the) People’s Republic of China: Potential and Technolo- gies,” Applied Energy, Vol. 86, No. 1, 2009, pp. 162-169. doi:10.1016/j.apenergy.2009.04.047

[28]   X. Fang, Y. Shen, J. Zhao, X. Bao and Y. Qu, “Status and Prospect of Lignocellulosic Bioethanol Production in Chi- na,” Bioresource Technology, Vol. 101, No. 13, 2010, pp. 4814-4819. doi:10.1016/j.biortech.2009.11.050

[29]   R. C. Kuhad and A. Singh, “Lignocellulose Biotechnol- ogy: Current and Future Prospects,” Critical Reviews in Biotechnology, Vol. 13, No. 2, 1993, pp. 151-172. doi:10.3109/07388559309040630

[30]   R. Shleser, “Ethanol Production in Hawaii, Processes, Feedstocks, and Current Economic Feasibility of Fuel Gra- de Ethanol Production in Hawaii,” State of Hawaii, De- partment of Business, Economic Development and Tourism, Honolulu, 1994.

[31]   L. Olsson and B. Hahn-H?gerdal, “Fermentation of Lig- nocellulosic Hydrolysates for Ethanol Production,” En- zyme and Microbial Technology, Vol. 18, No. 5, 1996, pp. 312-331. doi:10.1016/0141-0229(95)00157-3

[32]   S. W. Cheung and B. C. Anderson, “Laboratory Investi- gation of Ethanol Production from Municipal Primary Waste,” Bioresource Technology, Vol. 59, No. 1, 1997, pp. 81-96. doi:10.1016/S0960-8524(96)00109-5

[33]   R. Boopathy, “Biological Treatment of Swine Waste Using Anaerobic Baffled Reactors,” Bioresource Technology, Vol. 64, No. 1, 1998, pp. 1-6. doi:10.1016/S0960-8524(97)00178-8

[34]   T. Dewes and E. Hunsche, “Composition and Microbial Degradability in the Soil of Farmyard Manure from Ecol- ogically-Managed Farms,” Biological Agriculture and Hor- ticulture, Vol. 16, No. 3, 1998, pp. 251-268.

[35]   B. Yang and Y. Lu, “The Promise of Cellulosic Ethanol Production in China,” Journal of Chemical Technology and Biotechnology, Vol. 82, No. 1, 2007, pp. 6-10. doi:10.1002/jctb.1637

[36]   X. Fang, S. Yano, H. Inoue and S. Sawayama, “Strain Improvement of Acremonium Cellulolyticus for Cellulase Production by Mutation,” Journal of Bioscience and Bio- engineering, Vol. 107, No. 3, 2009, pp. 256-261. doi:10.1016/j.jbiosc.2008.11.022

[37]   Diário Comércio, Indústria e Servi?os, “Safra da Cana Será Menor Que Demanda Das Usinas,” 2011. http://www.dci.com.br/noticia.asp?id_editoria=7&id_noticia=368562&editoria=

[38]   Banco Nacional de Desenvolvimento Econ?mico e Social, “Bioetanol de Cana-de-A?úcar: Energia Para o Desenvol- vimento Sustentável,” BNDES e CGEE, Rio de Janeiro: 2008.

[39]   M. P. Austin and M. J. Gaywood, “Current Problems of Environmental Gradients and Species Response Curves in Relation to Continuum Theory,” Journal of Vegetation Science, Vol. 5, No. 4, 1994, pp. 473-482. doi:10.2307/3235973

[40]   R. G. Koegel and R. J. Straub, “Fractionation of Alfalfa for Food, Feed, Biomass and Enzymes,” American Society of Agricultural Engineers, Vol. 39, No. 3, 1996, pp. 769-774.

[41]   R. J. Bothast and B. C. Saha, “Ethanol Production from Agricultural Biomass Substrates,” Advances in Applied Microbiology, Vol. 44, 1997, pp. 261-286. doi:10.1016/S0065-2164(08)70464-7

[42]   S. K. Sharma, K. L. Kalra and H. S. Grewal, “Fermenta- tion of Enzymatically Saccharified Sunflower Stalks for Ethanol Production and Its Scale up,” Bioresource Tech- nology, Vol. 85, No. 1, 2002, pp. 31-33. doi:10.1016/S0960-8524(02)00076-7

[43]   K. L. Kadam and J. D. McMillan, “Availability of Corn Stover as a Sustainable Feedstock for Bioethanol Produc- tion,” Bioresource Technology, Vol. 88, No. 1, 2003, pp. 17-23. doi:10.1016/S0960-8524(02)00269-9

[44]   A. Demirbas, “Bioethanol from Cellulosic Materials: A Re- newable Motor Fuel from Biomass,” Energy Sources, Vol. 21, 2005, pp. 327-337. doi:10.1080/00908310390266643

[45]   M. S. Buckeridge, “Rotas Para o Etanol Celulósico em um Cenário de Mudan?as Climáticas,” Opini?es, Ribeir?o Preto, 2008, pp. 62-64.

[46]   C. E. Wyman, “Handbook on Bioethanol: Production and Utilization,” Taylor and Francis, Washington DC, 1996.

[47]   J. Pitkanen, A. Aristidou, L. Salusjarvi, L. Ruohonen and M. Penttila, “Metabolic Flux Analysis of Xylose Metabo- lism in Recombinant Saccharomyces Cerevisiae Using Continuous Culture,” Metabolic Engineering, Vol. 5, No. 1, 2003, pp. 16-31. doi:10.1016/S1096-7176(02)00012-5

[48]   D. J. Schell, C. J. Riley, N. Dowe, J. Farmer, K. N. Ibsen, M. F. Ruth, S. T. Toon and R. E. Lumpkin, “A Bioethanol Process Development Unit: Initial Operating Experiences and Results with Corn Fiber Feedstock,” Bioresource Tech- nology, Vol. 91, No. 2, 2004, pp. 179-188. doi:10.1016/S0960-8524(03)00167-6

[49]   Intergovernmental Panel on Climate Change, “Fourth Assessment Report: Summary for Policymakers,” 2005.

[50]   Y. Lin and S. Tanaka, “Ethanol Fermentation from Bio- mass Resources: Current State and Prospects,” Applied Mi- crobiology and Biotechnology, Vol. 69, No. 6, 2006, pp. 627-642. doi:10.1007/s00253-005-0229-x

[51]   J. Shreeve, “Redesigning Life to Make Ethanol,” Technology Review, Vol. 109, No. 3, 2006, pp. 66-68.

[52]   J. D. Broder, J. W. Barrier and G. R. Lightsey, “Conver- sion of Cotton Trash and Other Residues to Liquid Fuel,” In: J. S. Cundiff, Ed., Liquid Fuel from Renewable Resources, Proceedings of an Alternative Energy Conference Held in Nashville, St. Joseph, American Society of Agricultural Engineers, 1992, pp. 12-15, 198-200.

[53]   P. A. M. Claassen, J. B. van Lier, C. A. M. López, E. W. J. van Niel, L. Sijtsma, A. J. M. Stams, S. S. de Vries and R. A. Weusthuis, “Utilisation of Biomass for the Supply of Energy Carriers,” Applied Microbiology and Biotechnology, Vol. 52, No. 6, 1999, pp. 741-755. doi:10.1007/s002530051586

[54]   C. Cardona, O. Sánchez, J. Ramírez and L. álzate, “Bio- degradación de Residuos Orgánicos de Plazas de Mer- cado,” Revista Colombiana de Biotecnología, Vol. 6, No. 2, 2004, pp. 78-89.

[55]   J. Hill, S. Polasky, E. Nelson, D. Tilman, H. Huo, L. Ludwig, J. Neumann, H. Zheng and D. Bonta, “Climate Change and Health Costs of Air Emissions from Biofuels and Gasoline,” Sustainability Science, Vol. 106, No. 6, 2009, pp. 2077-2082. doi:10.1073/pnas.0812835106

[56]   R. K. Sukumaran, R. R. Singhania, G. M. Mathew and A. Pandey, “Cellulase Production Using Biomass Feed Stock and Its Application in Lignocellulose Saccharification for Bio-Ethanol Production,” Renewable Energy, Vol. 34, No. 2, 2009, pp. 421-424. doi:10.1016/j.renene.2008.05.008

[57]   R. O. Lambert, M. R. Moore-Bulls Jr. and J. W. Barrier, “An Evaluation of Two Acid Hydrolysis Processes for the Conversion of Cellulosic Feedstocks to Ethanol and Other Chemicals,” Applied Biochemistry and Biotechnology, Vol. 24-25, 1990, pp. 773-783. doi:10.1007/BF02920294

[58]   C. E. Wyman and B. J. Goodman, “Biotechnology for Production of Fuel, Chemicals and Materials from Bio- mass,” Applied Biochemistry and Biotechnology, Vol. 39-40, No. 1, 1993, pp. 41-59. doi:10.1007/BF02918976

[59]   C. E. Wyman, “Ethanol from Lignocellulosic Biomass: Technology, Economics and Opportunities,” Bioresource Technology, Vol. 50, No x, 1994, pp. 3-16. doi:10.1016/0960-8524(94)90214-3

[60]   International Energy Agency, “The International Energy Agency, supporting the Gleneagles Plan of Action,” Su- pport of the G8 Plan of Action, Hokkaido, 2008.

[61]   World Energy Assessment. “Energy and the Challenge of Sustainability,” United Nations Development Programme: Overview, 2004.

[62]   J. Goldemberg, “Biomassa e Energia,” Química Nova, Vol. 32, No. 3, 2009, pp. 582-587. doi:10.1590/S0100-40422009000300003

[63]   Food and Agriculture Organization, “Agroenergia da Biomassa Residual: Perspectivas Energéticas, Socio- econ?- micas Ambientais,” Foz do Igua?u/Brasília: Itaipu Binacional, Organiza??o das Na??es Unidas para a Agricultura e a Alimenta??o, 2009.

[64]   Food and Agriculture Organization, “El Estado Mundial de la Agricultura y la Alimentación: Biocombustibles: Perspectivas, Riesgos y Oportunidades,” FAO, Roma, 2008.

 
 
Top