Back
 GEP  Vol.7 No.5 , May 2019
Climate Change and Biodiversity Threats on Pachypodium Species in South Africa
Abstract:
The genus Pachypodium are succulent shrubs and small trees found in Southern Africa. Climate change is identified as one the most important threat impacting plant and animal species in the South Africa today, and in this case study, we examined the Pachypodium bispinosum and Pachypodium succulentum species in South Africa, which are becoming more vulnerable due to climate change impacts as well as human threats. This study investigates the climate change impacts on the two Pachypodium species, as well as the biodiversity threats facing the Pachypodium species today, and provides evidence regarding the importance of the study to understanding the climate change impacts on the Pachypodium species by showing the underlying variables affecting the changes.
Cite this paper: Guo, D. , Powrie, L. and Boyd, D. (2019) Climate Change and Biodiversity Threats on Pachypodium Species in South Africa. Journal of Geoscience and Environment Protection, 7, 37-44. doi: 10.4236/gep.2019.75004.
References

[1]   Booth, T. H., Nix, H. A., Busby, J. R., & Hutchinson, M. F. (2014). BIOCLIM: The First Species Distribution Modelling Package, Its Early Applications and Relevance to Most Current MAXENT Studies. Diversity and Distributions, Biodiversity Review, 20, 1-9. https://doi.org/10.1111/ddi.12144

[2]   Connolley, W. M., & Bracegirdle, T. J. (2007). An Antarctic Assessment of IPCC AR4 Coupled Models. Geophysical Research Letters, 34, L22505. https://doi.org/10.1029/2007GL031648

[3]   Department of Environmental Affairs (DEA) (2011). State of the Environment. Threatened Species. https://www.environment.gov.za/

[4]   Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E.,& Yates, C. J. (2011). A Statistical Explanation of MaxEnt for Ecologists. Diversity and Distributions, 17, 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

[5]   Fenner School (2016). ANUCLIM. http://fennerschool.anu.edu.au/research/products/anuclim-vrsn-61

[6]   Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., & Rummukainen, M. (2013). Evaluation of Climate Models. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press.

[7]   Fordham, D. A., Akçakaya, H. R., Araújo, M. B., Elith, J., Keith, D. A., Pearson, R., Auld, T. D., Mellin, C., Morgan, J. W., Regan, T. J., Tozer, M., Watts, M. J., White, M., Wintle, B. A., Yates, C., & Brook, B. W. (2012). Plant Extinction Risk under Climate Change: Are Forecast Range Shifts Alone a Good Indicator of Species Vulnerability to Global Warming? Global Change Biology, 18, 1357-1371. https://doi.org/10.1111/j.1365-2486.2011.02614.x

[8]   Franklin, J. (2009). Mapping Species Distributions: Spatial Inference and Prediction. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511810602

[9]   Guo, D., & Arnolds, J. L. (2019). Chapter 9: Biodiversity of South Africa. In T. Pullaiah (Ed.), Global Biodiversity, Volume 3: Selected Countries in Africa. Apple Academic Express. Milton Park, Abingdonon-Thames: CRC Taylor & Francis Group.

[10]   Guo, D., Young, A. J., Desmet, P. G., & Midgley, G. F. (2017). Climate Change Impacts on Dwarf Succulents in Namibia as a Result of Changes in Fog and Relative Humidity. Journal of Water Resource and Hydraulic Engineering (JWRHE), 6, 57-63. https://doi.org/10.5963/JWRHE0603004

[11]   Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very High Resolution Interpolated Climate Surfaces for Global Land Areas. International Journal of Climatology, 25, 1965-1978. https://doi.org/10.1002/joc.1276

[12]   iNaturalist (2019). The iNaturalist Network. Powered by iNaturalist Open Source Software. https://www.inaturalist.org/

[13]   Macvicar, C. N., Loxton, R. F., Lambrechts, J. N. N., Le Roux, J., De Villiers, J, M., Verster, E., Merryweather, F. R., Van Rooyen, T, H., Harmse, H. J., & Von, M. (1977). Soil Classification. A Binomial System for South Africa. Pretoria, South Africa: Library Holding ZA 1977.02 Report.

[14]   Nix, H. (1986). Abiogeographic Analysis of Australian Elapid Snakes. In R. Longmore (Eds.), Snakes: Atlas of Elapid Snakes of Australia (pp. 4-10). Canberra: Bureau of Flora and Fauna.

[15]   Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum Entropy Modeling of Species Geographic Distributions. Ecological Modelling, 190, 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

[16]   Phillips, S. J., Dudík, M., & Schapire, R. E. (2004). A Maximum Entropy Approach to Species Distribution Modeling. Proceedings of the Twenty-First International Conference on Machine Learning, Banff, Alberta, 4-8 July 2004, 655-662. https://doi.org/10.1145/1015330.1015412

[17]   Schulze, R. E. (Eds.) (2007). South African Atlas of Climatology and Agrohydrology. Pretoria, RSA: Water Research Commission, WRC Report 1489/1/06, Section 1.1.

[18]   Soil Classification Working Group (1991). Soil Classification. A Taxonomic System for South Africa. Pretoria, South Africa: Department of Agricultural Development, Library holding ZA 1991.01 Report.

[19]   Variawa, T., & Pfab, M. F. (2018). The Field Status of Three South African Pachypodium Species: Implications for Sustainable Trade. Draft Report Compiled for the Scientific Au-thority of South Africa.

 
 
Top