Back
 AS  Vol.10 No.5 , May 2019
Agrometeorological and Soil Criteria for Defining Workable Days for Rational Mechanized Sugarcane Harvest in Southern Brazil
Abstract: The number workable days (NWD) for agricultural field operations is of great importance for sizing agricultural machinery fleets. This is especially pivotal for sugarcane harvest, which extends from 8 to 10 months/year. In light of this, the current study aimed at defining criteria for obtaining the NWD for rational sugarcane harvest at different sites in the state of São Paulo, southern Brazil, taking into account both a general and a specific criteria. For this purpose, data from harvest interruption of 30 sugar mills in southern Brazil throughout periods ranging from two to five years were used. The following variables were tested as criteria for defining harvest interruption: minimum precipitation (PREC); soil water holding capacity (SWHC); and the limit of the ratio between actual soil moisture (SM) and SWHC. Based on such a specific criterion ascribed to each site along with a general criterion, NWD maps were prepared for the state of São Paulo, Brazil. The results showed that there were variations from the definition criteria of NWD at the different sites in the state. However, the use of a general criterion for harvest interruption, based on PREC ≥ 3 mm, SWHC = 40 mm and SM/SWHC ≥ 90%, provided accurate results. During the validation of these criteria, the NWD maps generated from the individual criterion proposed for each site resulted in an average error of 24.9 days/year, whereas the map generated from the general criterion culminated in an average error of 4.4 days/year.
Cite this paper: Vieira, L. , Sentelhas, P. and Pereira, A. (2019) Agrometeorological and Soil Criteria for Defining Workable Days for Rational Mechanized Sugarcane Harvest in Southern Brazil. Agricultural Sciences, 10, 597-621. doi: 10.4236/as.2019.105047.
References

[1]   Cadena-Zapata, M., Hoogmoed, W.B. and Perdok, U.D. (2002) Field Studies to Assess the Workable Range of Soils in the Tropical Zone of Veracruz, Mexico. Soil and Tillage Research, 68, 83-92.
https://doi.org/10.1016/S0167-1987(02)00112-5

[2]   Obour, P.B., Lamandé, M., Edwards, G., Sorensen, C.G. and Munkholm, L.J. (2017) Predicting Soil Workability and Fragmentation in Tillage: A Review. Soil Use and Management, 33, 288-298.
https://doi.org/10.1111/sum.12340

[3]   Castro Neto, P. (2001) Desenvolvimento e avaliação de equipamentos e metodologia para determinação de parametros físicos do solo relacionados a dias trabalháveis com máquinas agrícolas. PhD Dissertation, São Paulo State University, São Paulo, 155 p.

[4]   Rounsevell, M.D.A. and Jones, R.J.A. (1993) A Soil and Agroclimatic Model for Estimating Machinery Work-Days: The Basic Model and Climatic Sensitivity. Soil and Tillage Research, 26, 179-191.
https://doi.org/10.1016/0167-1987(93)90043-O

[5]   Earl, R. (1997) Prediction of Trafficability and Workability from Soil Moisture Deficit. Soil and Tillage Research, 40, 155-168.
https://doi.org/10.1016/S0167-1987(96)01072-0

[6]   Estrada, J.S., Schlosser, J.F., Farias, M.S., Santos, G.O. and Rüdell, I.Y.P. (2015) Metodologia para estimar o número de dias trabalháveis com máquinas agrícolas. Revista Ceres, 62, 410-414.
https://doi.org/10.1590/0034-737X201562040011

[7]   Chipanshi, A., Fitzmaurice, J., De Jong, R., Bogdan, D., Lewis, M., Kroetsch, D. and Lee, D. (2018) Assessment of Soil Trafficability across the Agricultural Region of the Canadian Praires with the Gridded Climate Data Set. Soil & Tillage Research, 184, 128-141.
https://doi.org/10.1016/j.still.2018.07.003

[8]   Carvalho, A.L., Souza, J.L., Lyra, G.B., Porfirio, A.C.S., Ferreira Junior, R.A., Santos, M.A. and Wanderley, H.S. (2009) Probabilidade de ocorrência de períodos secos para a região de Rio Largo, Alagoas. XVI Congresso Brasileiro de Agrometeorologia, Belo Horizonte, MG, Brasil, 22-25 September 2009, 1-5.

[9]   Ahaneku, I.E. and Onwualu, A.P. (2007) Predicting Suitable Field Workdays for Soil Tillage in North Central Nigeria. Nigerian Journal of Technology, 26, 81-90.
https://www.ajol.info/index.php/njt/article/view/123389/112931

[10]   Fernandes, H.C., Souza, A.P. and Vitória, E.L. (2000) Determinação dos dias potencialmente úteis para o trabalho com máquinas florestais. Revista árvore, 24, 269-274.

[11]   Monteiro, L.A., Sentelhas, P.C. and Piedade, S.M.S. (2014) Dias trabalháveis para o manejo do solo em função da chuva e da disponibilidade hídrica do solo em diferentes regiões brasileiras. Revista Ambiente and água, 9, 459-475.
https://doi.org/10.4136/ambi-agua.1389

[12]   Yousif, L.A., Dahab, M.H., Ramlaw, H.R.E. and Farid Ehoum, A.E. (2014) A Computer System for Prediction of Farm Machinery Workable Days in Rain-Fed Areas of Sudan. International Journal of Engineering and Scientific Research, 2, 52-63.
http://esrjournal.com/past-articles3a88.html?issueid=434

[13]   Thornthwaite, C.W. and Mather, J.R. (1955) The Water Balance. Publications in Climatology, Vol. 8, No. 1, Drexel Institute of Technology, Laboratory of Climatology, Centerton.

[14]   Zandonadi, L. and Pascoalino, A. (2012) Distribuição temporo-espacial das chuvas nas bacias dos rios Piracicaba, Capivari e Jundiaí (PCJ). Revista Geonorte, 2, 830-843.
http://www.periodicos.ufam.edu.br/revista-geonorte/issue/view/102

[15]   Garcia, B.I.L., Sentelhas, P.C., Tapia, L. and Sparovek, G. (2006) Filling in Missing Rainfall Data in the Andes Region of Venezuela, Based on a Cluster Analysis Approach. Revista Brasileira de Agrometeorologia, 14, 225-233.

[16]   Salvador, M.A. and Santos, L.S.F.C. (2010) Análise da precipitação na cidade de São Paulo no período 1961-2009. Revista Brasileira de Climatologia, 7, 7-20.
https://doi.org/10.5380/abclima.v7i0.25622

[17]   Nunes, L.N., Kluck, M.M. and Fachel, J.M.G. (2009) Uso de imputação múltipla de dados faltantes: Uma simulação utilizando dados epidemiológicos. Caderno de Saúde Pública, 25, 268-278.
https://doi.org/10.1590/S0102-311X2009000200005

[18]   White, J.W., Hoogenboom, H., Stackhouse Jr., P.W. and Hoell, J.M. (2008) Evaluation of NASA Satellite and Assimilation Model-Derived Long-Term Daily Temperature Data over the Continental US. Agricultural and Forest Meteorology, 148, 1574-1584.
https://doi.org/10.1016/j.agrformet.2008.05.017

[19]   Moeletsi, M.E. and Walker, S. (2012) Evaluation of NASA Satellite and Modelled Temperature Data for Simulating Maize Water Requirement Satisfaction Index in the Free State Province of South Africa. Physics and Chemistry of the Earth, 50-52, 157-164.
https://doi.org/10.1016/j.pce.2012.08.012

[20]   Monteiro, L.A., Sentelhas, P.C. and Pedra, G.U. (2018) Assessment of NASA/POWER Satellite-Based Weather System for Brazilian Conditions and Its Impact on Sugarcane Yield Simulation. International Journal of Climatology, 38, 1571-1581.
https://doi.org/10.1002/joc.5282

[21]   Ataíde, L.T., Caramori, P.H., Ricce, W.S., Silva, D.A.B. and Souza, J.R.P. (2012) The Probability of Potentially Useful Work Days during the Year in Londrina. Ciências Agrárias, 33, 2215-2226.
https://doi.org/10.5433/1679-0359.2012v33n6p2215

[22]   Camargo, A.P. and Sentelhas, P.C. (1997) Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no estado de São Paulo, Brasil. Revista Brasileira de Agrometeorologia, 5, 89-97.

[23]   Willmott, C.J., Ackleson, S.G., Davis, J.J., Feddema, K.M. and Klink, D.R. (1985) Statistics for the Evaluation and Comparison of Models. Journal of Geophysical Research, 90, 8995-9005.
https://doi.org/10.1029/JC090iC05p08995

[24]   Florez, A.J., Delgado, J.E. and Mera, M. (2013) Aplicación de la suavización Spline en la modelación de la temperatura promedio mensual del Valle del Cauca usando ponderación por diagramas de Voronoi. Entre Ciencia e Ingeniería, 7, 32-37.
http://biblioteca.ucp.edu.co/OJS/index.php/entrecei/article/view/2215/2079

[25]   Yamada, E.S.M. and Sentelhas, P.C. (2014) Agro-Climatic Zoning of Jatropha curcas as a Subside for Crop Planning and Implementation in Brazil. International Journal of Biometeorology, 58, 1995-2010.
https://doi.org/10.1007/s00484-014-0803-y

[26]   EMBRAPA (2011) Information Agency—Sugarcane.
http://www.agencia.cnptia.embrapa.br/gestor/cana-de-acucar/Abertura.html

[27]   Thomasson, A.J. and Jones, R.J.A. (1991) An Empirical Approach to Crop Modelling and the Assessment of Land Productivity. Agricultural Systems, 37, 351-367.
https://doi.org/10.1016/0308-521X(91)90058-I

[28]   Toro, A. and Hansson, P.A. (2004) Analysis of Field Machinery Performance Based on Daily Soil Workability Status Using Discrete Event Simulation or on Average Workday Probability. Agricultural Systems, 79, 109-129.
https://doi.org/10.1016/S0308-521X(03)00073-8

[29]   Rotz, C.A. and Harrigan, T.M. (2005) Predicting Suitable Days for Field Machinery Operations in a Whole Farm Simulation. Applied Engineering in Agriculture, 21, 563-571.
https://doi.org/10.13031/2013.18563

[30]   Shahbazi, F. and Jafarzadeh, A.A. (2010) Land Management Planning Concerning to Workability Timing of Soil in Souma Area, Using Aljarafe Model. 19th World Congress of Soil Science, Brisbane, 1-6 August 2010, 129-132.

 
 
Top