Back
 JTST  Vol.5 No.2 , May 2019
Resistance of Commercial Bed Covers against Faecal Pellets of House Dust Mites: Behaviour of Seams and Zippers
Abstract: This study evaluated the allergen impermeability against airborne allergens of dust mite droppings through all parts of commercial bed covers, including surface seams and zippers. Specimens were taken from places with and without seams and zipper. A novel penetration cell was developed to expose the specimens to an inoculum of purified mite droppings that was assessed for its allergen content Der p1 prior to the penetration tests. Using covers of different construction and material, the penetration level increased significantly in the presence of seams and zippers and could reach up to 6% depending on the seam’s/zipper’s characteristics and quality. Therefore, zippers and seams have to be considered as access points for the penetration of mite droppings. As for the penetration of airborne mite particles through the zipper, the penetration level was greatly attenuated by the presence of a cover strip. Depending on the respective quality and the construction type, the mite allergen Der p1 penetrated most likely through the zipper and seams of the specimens, already after a single laundry cycle. Hence, laundry may compromise the barrier performance and proves to be an important quality feature. In all samples, the textile surface showed sufficient allergen impermeability. Our conclusions provide recommendations to both manufacturers and users.
Cite this paper: Höfer, D. , Berner-Dannenmann, N. , Marquardt, C. and Hammer, T. (2019) Resistance of Commercial Bed Covers against Faecal Pellets of House Dust Mites: Behaviour of Seams and Zippers. Journal of Textile Science and Technology, 5, 27-37. doi: 10.4236/jtst.2019.52003.
References

[1]   Pawankar, R., Canonica, G., Holgate, S., et al. (2011) World Allergy Organization (WAO) White Book on Allergy. World Allergy Organisation, Wisconsin.
https://doi.org/10.1097/WOX.0b013e318238f58f

[2]   Custovic, A. and Simpson, A. (2012) The Role of Inhalant Allergens in Allergic Airways Disease. Journal of Investigational Allergology and Clinical Immunology, 22, 393.

[3]   Maunsell, K., Wraith, D. and Cunnington, A.M. (1968) Mites and House-Dust Allergy in Bronchial Asthma. The Lancet, 291, 1267-1270.
https://doi.org/10.1016/S0140-6736(68)92289-7

[4]   Tovey, E.R., Chapman, M. and Platts-Mills, T. (1981) Mite Faeces Are a Major Source of House Dust Allergens. Nature, 289, 592.
https://doi.org/10.1038/289592a0

[5]   Platts-Mills, T.E., Mitchell, E.B., Nock, P., et al. (1982) Reduction of Bronchial Hyperreactivity during Prolonged Allergen Avoidance. The Lancet, 320, 675-678.
https://doi.org/10.1016/S0140-6736(82)90709-7

[6]   Busse, W., Boushey, H., Camargo, C., et al. (2007) Expert Panel Report 3: Guidelines for the Diagnosis and Management of Asthma. US Department of Health and Human Services, National Heart Lung and Blood Institute, Washington DC, 1-417.

[7]   GØtzsche, P.C. and Johansen, H.K. (2008) House Dust Mite Control Measures for Asthma: Systematic Review. Allergy, 63, 646-659.
https://doi.org/10.1111/j.1398-9995.2008.01690.x

[8]   Luczynska, C., Tredwell, E., Smeeton, N., et al. (2003) A Randomized Controlled Trial of Mite Allergen-Impermeable Bed Covers in Adult Mite-Sensitized Asthmatics. Clinical & Experimental Allergy, 33, 1648-1653.
https://doi.org/10.1111/j.1365-2222.2003.01729.x

[9]   Terreehorst, I., Hak, E., Oosting, A.J., et al. (2003) Evaluation of Impermeable Covers for Bedding in Patients with Allergic Rhinitis. New England Journal of Medicine, 349, 237-246.
https://doi.org/10.1056/NEJMoa023171

[10]   Woodcock, A., Forster, L., Matthews, E., et al. (2003) Control of Exposure to Mite Allergen and Allergen-Impermeable Bed Covers for Adults with Asthma. New England Journal of Medicine, 349, 225-236.
https://doi.org/10.1056/NEJMoa023175

[11]   Wood, R.A., Johnson, E.F., Van Natta, M.L., et al. (1998) A Placebo-Controlled Trial of a HEPA Air Cleaner in the Treatment of Cat Allergy. American Journal of Respiratory and Critical Care Medicine, 158, 115-120.
https://doi.org/10.1164/ajrccm.158.1.9712110

[12]   Francis, H., Fletcher, G., Anthony, C., et al. (2003) Clinical Effects of Air Filters in Homes of Asthmatic Adults Sensitized and Exposed to Pet Allergens. Clinical & Experimental Allergy, 33, 101-105.
https://doi.org/10.1046/j.1365-2222.2003.01570.x

[13]   Mahakittikun, V., Boitano, J.J., Komoltri, C., et al. (2009) Anti-Mite Covers: Potential Criteria for Materials Used against Dust Mites. Textile Research Journal, 79, 436-443.
https://doi.org/10.1177/0040517508093417

[14]   Vaughan, J.W., McLaughlin, T.E., Perzanowski, M.S., et al. (1999) Evaluation of Materials Used for Bedding Encasement: Effect of Pore Size in Blocking Cat and Dust Mite Allergen. Journal of Allergy and Clinical Immunology, 103, 227-231.
https://doi.org/10.1016/S0091-6749(99)70495-1

[15]   Mahakittikun, V., Komoltri, C., Nochot, H., et al. (2003) Laboratory Assessment of the Efficiency of Encasing Materials against House Dust Mites and Their Allergens. Allergy, 58, 981-985.
https://doi.org/10.1034/j.1398-9995.2003.00095.x

[16]   Mahakittikun, V., Boitano, J.J., Tovey, E., et al. (2006) Mite Penetration of Different Types of Material Claimed as Mite Proof by the Siriraj Chamber Method. Journal of Allergy and Clinical Immunology, 118, 1164-1168.
https://doi.org/10.1016/j.jaci.2006.07.025

[17]   Mahakittikun, V., Jirapongsananuruk, O., Nochot, H., et al. (2003) Woven Material for Bed Encasement Prevents Mite Penetration. Journal of Allergy and Clinical Immunology, 112, 1239-1241.
https://doi.org/10.1016/j.jaci.2003.08.045

[18]   CalderÓn, M.A., Linneberg, A., Kleine-Tebbe, J., et al. (2015) Respiratory Allergy Caused by House Dust Mites: What Do We Really Know? Journal of Allergy and Clinical Immunology, 136, 38-48.
https://doi.org/10.1016/j.jaci.2014.10.012

[19]   Bharani, M., Shiyamaladevi, P. and Mahendra Gowda, R. (2012) Characterization of Seam Strength and Seam Slippage on Cotton Fabric with Woven Structures and Finish. Research Journal of Engineering Sciences, 1, 41-50.

[20]   Arlian, L.G., Vyszenski-Moher, D.L. and Morgan, M.S. (2003) Mite and Mite Allergen Removal during Machine Washing of Laundry. Journal of Allergy and Clinical Immunology, 111, 1269-1273.
https://doi.org/10.1067/mai.2003.1547

[21]   McDonald, L.G. and Tovey, E. (1992) The Role of Water Temperature and Laundry Procedures in Reducing House Dust Mite Populations and Allergen Content of Bedding. Journal of Allergy and Clinical Immunology, 90, 599-608.
https://doi.org/10.1016/0091-6749(92)90132-L

[22]   Siebers, R.W., Patchett, K., Fitzharris, P., et al. (1996) Mite Allergen (Der p 1) on Children’s Clothing. Journal of Allergy and Clinical Immunology, 98, 853-854.
https://doi.org/10.1016/S0091-6749(96)70141-0

[23]   Tovey, E.R., Liu-Brennan, D., Garden, F.L., et al. (2016) Time-Based Measurement of Personal Mite Allergen Bioaerosol Exposure over 24 Hour Periods. PLoS ONE, 11, e0153414.
https://doi.org/10.1371/journal.pone.0153414

[24]   Halken, S., HØst, A., Niklassen, U., et al. (2003) Effect of Mattress and Pillow Encasings on Children with Asthma and House Dust Mite Allergy. Journal of Allergy and Clinical Immunology, 111, 169-176.
https://doi.org/10.1067/mai.2003.5

[25]   Horak, F., Matthews, S., Ihorst, G., et al. (2004) Effect of Mite-Impermeable Mattress Encasings and an Educational Package on the Development of Allergies in a Multinational Randomized, Controlled Birth Cohort Study—24 Months Results of the Study of Prevention of Allergy in Children in Europe. Clinical & Experimental Allergy, 34, 1220-1225.
https://doi.org/10.1111/j.1365-2222.2004.02024.x

[26]   Nankervis, H., Pynn, E.V., Boyle, R.J., et al. (2015) House Dust Mite Reduction and Avoidance Measures for Treating Eczema. Cochrane Database of Systematic Reviews, 1, CD008426.
https://doi.org/10.1002/14651858.CD008426.pub2

 
 
Top