Back
 JAMP  Vol.7 No.5 , May 2019
A New Class of Exactly Solvable Models within the Schrödinger Equation with Position Dependent Mass
Abstract: The study of physical systems endowed with a position-dependent mass (PDM) remains a fundamental issue of quantum mechanics. In this paper we use a new approach, recently developed by us for building the quantum kinetic energy operator (KEO) within the Schrodinger equation, in order to construct a new class of exactly solvable models with a position varying mass, presenting a harmonic-oscillator-like spectrum. To do so we utilize the formalism of supersymmetric quantum mechanics (SUSY QM) along with the shape invariance condition. Recent outcomes of non-Hermitian quantum mechanics are also taken into account.
Cite this paper: Dhahbi, A. , Chargui, Y. and Trablesi, A. (2019) A New Class of Exactly Solvable Models within the Schrödinger Equation with Position Dependent Mass. Journal of Applied Mathematics and Physics, 7, 1013-1026. doi: 10.4236/jamp.2019.75068.
References

[1]   Geller, M. and Kohn, W. (1993) Quantum Mechanics of Electrons in Crystals with Graded Composition. Physical Review Letters, 70, 3103.
https://doi.org/10.1103/PhysRevLett.70.3103

[2]   Ring, P. and Schuck, P. (1980) The Nuclear Many-Body Problem. Springer, Berlin.

[3]   Ganguly, A., Kuru, S., Negro, J. and Nieto, L. (2006) A Study of the Bound States for Square Potential Wells with Position-Dependent Mass. Physics Letters A, 360, 228-233.
https://doi.org/10.1016/j.physleta.2006.08.032

[4]   Plastino, A., Casas, M. and Plastino, A. (2001) Bohmian Quantum Theory of Motion for Particles with Position-Dependent Effective Mass. Physics Letters A, 281, 297-304.
https://doi.org/10.1016/S0375-9601(01)00143-8

[5]   de Saavedra, F., Boronat, J., Polls, A. and Fabrocini, A. (1994) E ective Mass of One 4He Atom in Liquid 3He. Physical Review B, 50, 4248(R).
https://doi.org/10.1103/PhysRevB.50.4248

[6]   Puente, A., Serra, L. and Casas, M. (1994) Dipole Excitation of Na Clusters with a Non-Local Energy Density Functional. Zeitschrift fur Physik D Atoms, Molecules and Clusters, 31, 283-286.
https://doi.org/10.1007/BF01445008

[7]   BenDaniel, D. and Duke, C. (1966) Space-Charge E ects on Electron Tunneling. Physical Review, 152, 683.
https://doi.org/10.1103/PhysRev.152.683

[8]   Li, M.T. and Kuhn, K. (1993) Band-O set Ratio Dependence on the E ective-Mass Hamiltonian Based on a Modi ed Pro le of the GaAs-Alx-Ga1-xAs Quantum Well. Physical Review B, 47, Article ID: 12760.
https://doi.org/10.1103/PhysRevB.47.12760

[9]   Bastard, G. (1981) Superlattice Band Structure in the Envelope-Function Approximation. Physical Review B, 24, 5693.
https://doi.org/10.1103/PhysRevB.24.5693

[10]   Gora, T. and Williams, F. (1969) Theory of Electronic States and Transport in Graded Mixed Semiconductors. Physical Review, 177, 1179.
https://doi.org/10.1103/PhysRev.177.1179

[11]   Zhu, Q. and Kroemer, H. (1983) Interface Connection Rules for E ective-Mass Wave Functions at an Abrupt Heterojunction between Two Di erent Semiconductors. Physical Review B, 27, 3519.
https://doi.org/10.1103/PhysRevB.27.3519

[12]   Morrow, R. and Brownstein, K. (1984) Model E ective-Mass Hamiltonians for Abrupt Heterojunctions and the Associated Wave-Function-Matching Conditions. Physical Review B, 30, 678.
https://doi.org/10.1103/PhysRevB.30.678

[13]   Bastard, G. (1992) Wave Mechanics Applied to Semiconductor Hetero Structures. EDP Sciences. Les Editions de Physique, Les Ulis, France.

[14]   Von Roos, O. (1983) Position-Dependent E ective Masses in Semiconductor Theory. Physical Review B, 27, 7547.
https://doi.org/10.1103/PhysRevB.27.7547

[15]   Von Roos, O. (1985) Position-Dependent E ective Masses in Semiconductor Theory. II. Physical Review B, 31, 2294.
https://doi.org/10.1103/PhysRevB.31.2294

[16]   Morrow, R. (1987) Establishment of an E ective-Mass Hamiltonian for Abrupt Heterojunctions. Physical Review B, 35, 8074.
https://doi.org/10.1103/PhysRevB.35.8074

[17]   Harrison, P. (2000) Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures. Wiley, New York.

[18]   Boztosun, I., Bonatsos, D. and Inci, I. (2008) Analytical Solutions of the Bohr Hamiltonian with the Morse Potential. Physical Review C, 77, Article ID: 044302.
https://doi.org/10.1103/PhysRevC.77.044302

[19]   Bonatsos, D., Georgoudis, P., Lenis, D., Minkov, N. and Quesne, C. (2011) Bohr Hamiltonian with a Deformation-Dependent Mass Term for the Davidson Potential. Physical Review C, 83, Article ID: 044321.
https://doi.org/10.1103/PhysRevC.83.044321

[20]   Hamdouni, Y. (2011) Motion of Position-Dependent E ective Mass as a Damping-Antidamping Process: Application to the Fermi Gas and to the Morse Potential. Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 385301.
https://doi.org/10.1088/1751-8113/44/38/385301

[21]   Mustafa, O. (2011) Radial Power-Law Position-Dependent Mass: Cylindrical Coordinates, Separability and Spectral Signatures. Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 355303.
https://doi.org/10.1088/1751-8113/44/35/355303

[22]   Foulkes, W. and Schluter, M. (1990) Pseudopotentials with Position-Dependent Electron Masses. Physical Review B, 42, Article ID: 11505.
https://doi.org/10.1103/PhysRevB.42.11505

[23]   Barranco, M., Pi, M., Gatica, S., Hernandez, E. and Navarro, J. (1997) Structure and Energetics of Mixed 4He-3He Drops. Physical Review B, 56, 8997.
https://doi.org/10.1103/PhysRevB.56.8997

[24]   Morris, J. (2015) New Scenarios for Classical and Quantum Mechanical Systems with Position Dependent Mass. Quantum Studies: Mathematics and Foundations, 2, 359-370.
https://doi.org/10.1007/s40509-015-0037-7

[25]   Dekar, L., Chetouani, L. and Hammann, T. (1998) An Exactly Soluble Schrodinger Equation with Smooth Position-Dependent Mass. Journal of Mathematical Physics, 39, 2551.
https://doi.org/10.1063/1.532407

[26]   Plastino, A., Puente, A., Casas, M., Garcias, F. and Plastino, A. (2000) Bound States in Quantum Systems with Position Dependent E ective Masses. Revista Mexicana de Fsica, 46, 78.

[27]   Alhaidari, A. (2002) Solutions of the Nonrelativistic Wave Equation with Position-Dependent E ective Mass. Physical Review A, 66, Article ID: 042116.
https://doi.org/10.1103/PhysRevA.66.042116

[28]   Yu, J. and Dong, S. (2004) Exactly Solvable Potentials for the Schrodinger Equation with Spatially Dependent Mass. Physics Letters A, 235, 194-198.
https://doi.org/10.1016/j.physleta.2004.03.056

[29]   Mustafa, O. and Mazharimousavi, S. (2009) Spherical-Separability of Non-Hermitian Hamiltonians and Pseudo-PTSymmetry. International Journal of Theoretical Physics, 48, 183-193.
https://doi.org/10.1007/s10773-008-9794-y

[30]   Bagchi, B., Banerjee, A., Quesne, C. and Tkachuk, V. (2005) Deformed Shape Invariance and Exactly Solvable Hamiltonians with Position-Dependent E ective Mass. Journal of Physics A: Mathematical and General, 38, 2929.
https://doi.org/10.1088/0305-4470/38/13/008

[31]   de Souza Dutra, A. and Almeida, C. (2000) Exact Solvability of Potentials with Spatially Dependent E ective Masses. Physics Letters A, 275, 25-30.
https://doi.org/10.1016/S0375-9601(00)00533-8

[32]   Bagchi, B., Gorain, P., Quesne, C. and Roychoudhury, R. (2004) A General Scheme for the E ective-Mass Schrodinger Equation and the Generation of the Associated Potentials. Modern Physics Letters A, 19, 2765-2775.
https://doi.org/10.1142/S0217732304016123

[33]   Levy-Leblond, J. (1995) Position-Dependent E ective Mass and Galilean Invariance. Physical Review A, 52, 1845.
https://doi.org/10.1103/PhysRevA.52.1845

[34]   Chetouani, L., Dekar, L. and Hammann, T. (1995) Greens Functions via Path Integrals for Systems with Position-Dependent Masses. Physical Review A, 52, 82.
https://doi.org/10.1103/PhysRevA.52.82

[35]   Yung, K. and Yee, J. (1994) Derivation of the Modi ed Schrodinger Equation for a Particle with a Spatially Varying Mass through Path Integrals. Physical Review A, 50, 104.
https://doi.org/10.1103/PhysRevA.50.104

[36]   Rajbongshi, H. (2018) Exact Analytic Solution of Position-Dependent Mass Schrodinger Equation. Indian Journal of Physics, 92, 357-367.
https://doi.org/10.1007/s12648-017-1108-x

[37]   Shewell, J. (1959) On the Formation of Quantum-Mechanical Operators. American Journal of Physics, 27, 16.
https://doi.org/10.1119/1.1934740

[38]   Trabelsi A., Madouri F., Merdaci A. and Almatar A. (2013) Classi cation Scheme for Kinetic Energy Operators with Position-Dependent Mass. e-print arXiv: 1302.3963v1

[39]   Bender, C. and Milton, K. (1997) Nonperturbative Calculation of Symmetry Breaking in Quantum Field Theory. Physical Review D, 55, R3255(R).
https://doi.org/10.1103/PhysRevD.55.R3255

[40]   Bender, C. and Boettcher, S. (1998) Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry. Physical Review Letters, 80, 5243.
https://doi.org/10.1103/PhysRevLett.80.5243

[41]   Bender, C., Boettcher, S. and Meisinger, P. (1999) PT-Symmetric Quantum Mechanics. Journal of Mathematical Physics, 40, 2201.
https://doi.org/10.1063/1.532860

[42]   Bender, C. (1999) The Complex Pendulum. Physics Reports, 315,27-40.
https://doi.org/10.1016/S0370-1573(99)00024-1

[43]   Bender, C., Dunne, G.V. and Meisenger, P.N. (1999) Complex Periodic Potentials with Real Band Spectra. Physics Letters A, 252, 272-276.
https://doi.org/10.1016/S0375-9601(98)00960-8

[44]   Bender, C. and Dunne, G.V. (1999) Large-Order Perturbation Theory for a Non-Hermitian PT-Symmetric Hamiltonian. Journal of Mathematical Physics, 40, 4616.
https://doi.org/10.1063/1.532991

[45]   Bender, C., Boettcher, S. and Savage, V.M. (2000) Conjecture on the Interlacing of Zeros in Complex Sturm-Liouville Problems. Journal of Mathematical Physics, 41, 6381.
https://doi.org/10.1063/1.1288247

[46]   Bender, C., Dunne, G., Meisenger, P. and Simsek, M. (2001) Quantum Complex H enon-Heiles Potentials. Physics Letters A, 281, 311-316.
https://doi.org/10.1016/S0375-9601(01)00146-3

[47]   Bender, C., Berry, M., Meisenger, P., Savage, V. and Simsek, M. (2001) Complex WKB Analysis of Energy-Level Degeneracies of Non-Hermitian Hamiltonians. Journal of Physics A: Mathematical and General, 34, L31.
https://doi.org/10.1088/0305-4470/34/6/101

[48]   Chargui, Y., Dhahbi, A. and Trabelsi, A., A Novel Approach for Constructing Kinetic Energy Operators with Position Dependent Mass. Submitted for publication.

[49]   Hassanabadi, H., Chung, W.S., Zare, S. and Alimohammadi, M. (2017) Scattering of Position-Dependent Mass Schrodinger Equation with Delta Potential. The European Physical Journal Plus, 132, 135.
https://doi.org/10.1140/epjp/i2017-11422-0

[50]   Abramowitz, M. and Stegun, I.A. (1972) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing O ce.

[51]   Carinena, J.F., Ranada, M.F. and Santander, M. (2007) A Quantum Exactly Solvable Non-Linear Oscillator with Quasi-Harmonic Behaviour. Annals of Physics, 322, 434-459.
https://doi.org/10.1016/j.aop.2006.03.005

[52]   Midya, B. and Roy, B. (2009) A Generalized Quantum Nonlinear Oscillator. Journal of Physics A: Mathematical and Theoretical, 42, Article ID: 285301.
https://doi.org/10.1088/1751-8113/42/28/285301

[53]   Mostafazadeh, A. (2002) Pseudo-Hermiticity versus PT Symmetry: The Necessary Condition for the Reality of the Spectrum of a Non-Hermitian Hamiltonian. Journal of Mathematical Physics, 43, 205.
https://doi.org/10.1063/1.1418246

[54]   Mostafazadeh, A. (2002) Pseudo-Hermiticity versus PTSymmetry. II. A Complete Characterization of Non-Hermitian Hamiltonians with a Real Spectrum. Journal of Mathematical Physics, 43, 2814.
https://doi.org/10.1063/1.1461427

[55]   Mostafazadeh, A. (2002) Pseudo-Hermiticity versus PTSymmetry III: Equivalence of Pseudo-Hermiticity and the Presence of Antilinear Symmetries. Journal of Mathematical Physics, 43, 3944.
https://doi.org/10.1063/1.1489072

[56]   Kretschmer, R. and Szymanowski, L. (2004) Quasi-Hermiticity in In nite-Dimensional Hilbert Spaces. Physics Letters A, 325, 112-117.
https://doi.org/10.1016/j.physleta.2004.03.044

[57]   Cooper, F., Khare, A. and Sukhatme, U. (1995) Supersymmetry and Quantum Mechanics. Physics Reports, 251, 267-385.
https://doi.org/10.1016/0370-1573(94)00080-M

[58]   Zhao, F.Q., Liang, X.X. and Ban, S.L. (2003) In uence of the Spatially Dependent E ective Mass on Bound Polarons in Finite Parabolic Quantum Wells. The European Physical Journal B, 33, 3-8.
https://doi.org/10.1140/epjb/e2003-00134-3

[59]   Mathews, P.M. and Lakshmanan, M. (1975) A Quantum- Mechanically Solvable Nonpolynomial Lagrangian with Velocity-Dependent Interaction. Il Nuovo Cimento A, 26, 299-316.
https://doi.org/10.1007/BF02769015

[60]   Karthiga, S., Chithiika Ruby, V., Senthilvelan, M. and Lakshmanan, M. (2017) Quantum Solvability of a General Ordered Position Dependent Mass System: Mathews-Lakshmanan Oscillator. Journal of Mathematical Physics, 58, Article ID: 102110.
https://doi.org/10.1063/1.5008993

[61]   Gonul, B., Gonul, B., Tutcu, D. and  Ozer, O. (2002) Supersymmetric Approach to Exactly Solvable Systems with Position-Dependent E ective Masses. Modern Physics Letters A, 17, 2057-2066.
https://doi.org/10.1142/S0217732302008563

[62]   Arda, A. and Sever, R. (2011) Bound State Solutions of Schrodinger Equation for Generalized Morse Potential with Position-Dependent Mass. Communications in Theoretical Physics, 56, 51.
https://doi.org/10.1088/0253-6102/56/1/09

[63]   Chen, Y., Yan, Z., Mihalache, D. and Malomed, B.A. (2017) Families of Stable Solitons and Excitations in the PT-Symmetric Nonlinear Schrodinger Equations with Position-Dependent E ective Masses. Scienti c Reports, 7, Article No. 1257.
https://doi.org/10.1038/s41598-017-01401-3

[64]   Xie, Q.-T. (2012) New Quasi-Exactly Solvable Double-Well Potentials. Journal of Physics A: Mathematical and Theoretical, 45, Article ID: 175302.
https://doi.org/10.1088/1751-8113/45/17/175302

 
 
Top