Back
 JWARP  Vol.11 No.4 , April 2019
The Protective Role of a Riparian Vegetation to the Sources of a Rural Watershed
Abstract: A recent review of the Brazilian forest law has suggested the possibility of decrease the riparian buffer width along the banks of waterways. This vegetation can trap solutes which had been deposited in the soil and which would otherwise be carried to the waterways in runoff water. In the current study, we applied the AVSWAT model to the Rio Bonito micro-basin of city of Descalvado, State of São Paulo, Brazil, to verify the amount of nitrogen (N) and phosphorous (P) entering the water resource, and to evaluate the environmental protection provided by the riparian vegetation zones. Our results demonstrate this protection is effective in reducing the amount of nitrogen (N) and phosphorous (P) carried to the river. The scenario produced by the data could be used to diagnose the contamination of this particular watershed and to indicate the measures that should be adopted to ensure the restoration and preservation of riparian vegetation zones.
Cite this paper: Neves, F. , Fontes, A. and Oliveira, A. (2019) The Protective Role of a Riparian Vegetation to the Sources of a Rural Watershed. Journal of Water Resource and Protection, 11, 419-433. doi: 10.4236/jwarp.2019.114025.
References

[1]   Zhang, P., Liu, Y., Pan, Y. and Yu, Z. (2011) Land Use Pattern Optimization Based on CLUE-S and SWAT Models for Agricultural Non-Point Source Pollution Control. Mathematical and Computer Modelling, 58, 588-595.
https://doi.org/10.1016/j.mcm.2011.10.061

[2]   Neves, F.F., Silva, F.G.B. and Crestana, S. (2006) Uso do modelo AVSWAT na avaliação do aporte de nitrogênio (N) e fósforo (P) aos mananciais de uma microbacia hidrográfica contendo atividade avícola. Engenharia Sanitária e Ambiental, 11, 311-317.
https://doi.org/10.1590/S1413-41522006000400003

[3]   Barling, R.D. and Moore, I.D. (1994) Role of Buffer Strips in Management of Waterway Pollution: A Review. Environmental Management, 18, 543-558.
https://doi.org/10.1007/BF02400858

[4]   Naiman, R.J., Décamps, H. and McClain, M.E. (2005) Riparia: Ecology, Conservation and Management of Streamside Communities. Elsevier, San Diego.
https://doi.org/10.1016/B978-012663315-3/50010-1

[5]   Sahu, M. and Gu, R.R. (2009) Modeling the Effects of Riparian Buffer Zone and Contour Strips on Stream Water Quality. Ecological Engineering, 35, 1167-1177.
https://doi.org/10.1016/j.ecoleng.2009.03.015

[6]   Clinton, B. (2011) Stream Water Responses to Timber Harvest: Riparian Buffer Width Effectiveness. Fuel and Energy Abstracts, 261, 979-988.
https://doi.org/10.1016/j.foreco.2010.12.012

[7]   Clinton, B.D., Vose, J.M. and Fowler, D.L. (2010) Flat Branch Monitoring Project: Stream Water Temperature and Sediment Responses to Forest Cutting in the Riparian Zone. Res. Pap. SRS-51, U.S. Department of Agriculture Forest Service, Southern Research Station, Asheville.

[8]   DI Luzio, M., Srinivasan, R. and Arnold, J. (2001) ArcView Interface for SWAT2000 User’s Guide. Blackland Research Center, Texas Agricultural Experiment Station, Temple.

[9]   Tribe, A. (1992) Automated Recognition of Valley Lines and Drainage Networks from Digital Elevation Models: A Review and a New Method. Journal of Hydrology, 139, 263-293.
https://doi.org/10.1016/0022-1694(92)90206-B

[10]   Neitsch, S.L., Arnold, J.G., Kiniry, J.R. and Williams, J.R. (2011) Soil and Water Assessment Tool-Theoretical Documentation. Agricultural Research Service, Temple.

[11]   Williams, J.R. and Hann, R.W. (1978) Optimal Operation of Large Agricultural Watersheds with Water Quality Restraints. Texas Water Resources Institute.
http://hdl.handle.net/1969.1/6286

[12]   Arana, A.R.A. (2002) Os avicultores integrados no Brasil: Estratégias e adaptações o caso Coperguaçu Descalvado SP. Terra Livre—Geografia, movimentos sociais e teoria, 2, 147-162.
https://www.agb.org.br/publicacoes/index.php/terralivre/article/view/188

[13]   Belusso, D. and Hespanhol, A.N. (2010) A evolução da avicultura industrial brasileira e seus efeitos territoriais. Revista Percurso, 2, 25-51.

[14]   Gustavo, S.B. and Filho, L.P.G. (2012) Estudo sobre o reaproveitamento dos dejetos de suínos na bacia do Rio Sangão—Santa Catarina. Revista em agronegócio e meio ambiente, 5, 151-174.
http://177.129.73.3/index.php/rama/article/view/2201

[15]   Santos, A.L.F. and Borges, L.O.S. (2012) Qualidade da água do ribeirão Piancó, GO e suas implicações ambientais. Scientia Plena, 8, 1-7.
http://www.scientiaplena.org.br/sp/article/view/766

[16]   Machado, R.E. and Vettorazzi, C.A. (2003) Simulação da produção de sedimentos para a microbacia hidrográfica do Ribeirão dos Marins, SP. Revista Brasileira de Ciência do Solo, 27, 735-741. http://www.scielo.br/pdf/rbcs/v34n1/a26v34n1.pdf
https://doi.org/10.1590/S0100-06832003000400018


[17]   Garrido, R.-J., Damásio, J., Carrera-Fernandez, J. and Silveira, A.H.P. (2003) Impactos da Cobrança pelo Uso da Água: Uma metodologia de avaliação. Revista Bahia & Análise de Dados, 13, 497-513.
http://www.bvsde.paho.org/bvsacd/cd17/cobravalia.pdf

[18]   Krysanova, V., Müller-Wohlfeil, D.-I. and Becker, A. (1998) Development and Test of a Spatially Distributed Hydrological/Water Quality Model for Mesoscale Watersheds. Ecological Modelling, 106, 261-289.
https://doi.org/10.1016/S0304-3800(97)00204-4

[19]   Mitchell Junior, C.C. (1991) The Value and Use of Poultry Waste as a Fertilizer. In: Poultry By-Product Management Handbook, Auburn University, Cooperative Extensive Service, Alabama.

[20]   Oliveira, L.M. (1998) Controle de fontes dispersas de poluição pela fixação de largura mínima de faixa de vegetação natural ou recomposta ao longo de corpos d’água. Dissertação de Mestrado, EESC/USP, São Carlos.

[21]   Fonseca, H.S. (2002) Qualidade das águas superficiais de uma bacia hidrográfica sujeita a processos erosivos—Estudo de caso do Rio Bonito, em Descalvado, SP. Dissertação de Mestrado, UFSCar, São Carlos.

[22]   Moraes, M.E.B. (2003) Zoneamento Ambiental de Bacias Hidrográficas: Uma abordagem metodológica aplicada na Bacia do Rio Bonito (SP) Tese de Doutorado. UFSCar, São Carlos.

[23]   Ocampo, C.J., Sivapalan, M. and Oldham, C.E. (2006) Hydrological Connectivity of Upland-Riparian Zones in Agricultural Catchments: Implications for Runoff Generation and Nitrate Transport. Journal of Hydrology, 331, 643-658.
https://doi.org/10.1016/j.jhydrol.2006.06.010

[24]   Jencso, K.G., McGlynn, B.L., Gooseff, M.N., Wondzell, S.M., Bencala, K.E. and Marshall, A. (2009) Hydrologic Connectivity between Landscapes and Streams: Transferring Reach- and Plot-Scale Understanding to the Catchment Scale. Water Resources Research, 45, W04428.
https://doi.org/10.1029/2008WR007225

[25]   Jencso, K.G. and McGlynn, B.L. (2011) Hierarchical Controls on Runoff Generation: Topographically Driven Hydrologic Connectivity, Geology, and Vegetation. Water Resources Research, 47, W11527.
https://doi.org/10.1029/2011WR010666

[26]   Neves, F.F., Avelar, W.E.P. and Lavrador, M.A.S. (2014) Modelling the Risk of Mortality of Corbicula fluminea (Müller, 1774) (Bivalvia: Corbiculidae) Exposed to Different Turbidity Conditions. Brazilian Journal of Biology, 74, 509-514.
https://doi.org/10.1590/1519-6984.21612

 
 
Top