JGIS  Vol.11 No.2 , April 2019
Creation and Analysis of Earth’s Surface Roughness Maps from Airborne LiDAR Measurements in Downtown Urban Landscape
Abstract: The Earth’s surface roughness constitutes an important parameter in terrain analysis for studying different environmental and engineering problems. Authors gave different definitions and measures for the earth’s surface roughness that usually depend on exploitation of digital elevation data for its reliable determination. This research aimed at exploring the different approaches for defining and extraction of the Earth’s surface roughness from Airborne LiDAR Measurements. It also aimed at evaluating the effects of the window size of the standard deviation filter on the created roughness maps in downtown landscapes using three known approaches namely; standard deviation filtering of the Digital Elevation Model (DEM), standard deviation filtering of the slope gradient model and standard deviation filtering of the profile curvature model. In this context, different roughness maps have been created from Airborne LiDAR measurements of the City of Toronto, Canada using the three filtering approaches with varying window sizes. Visual analysis has shown color tones of small roughness values with smooth textures dominate the roughness maps from small window sizes of the standard deviation filter, however, increasing the window sizes has produced wider variations of the color tones and rougher texture roughness maps. The standard deviations and ranges of the roughness maps from LiDAR DEM have increased due to increasing the filter window size while the skewness and kurtosis have decreased due to increasing the window size, indicating that the roughness maps from larger window sizes are statistically more symmetrical and more consistent. Thus, kurtosis has decreased by 53% and 82% due to increasing the window size to 7 × 7 and 15 × 15 respectively. The standard deviations of the roughness maps from the slope gradient model have increased due to increasing the window size till 15 × 15 while they have decreased with more increases. However, skewness has decreased due to increasing the window size till 15 × 15 and the kurtosis has decreased with higher rate till window size of 11 × 11. In the roughness maps from the profile curvature model, the ranges and skewness have decreased by 93.6% and 82.6% respectively due to increasing the window size to 15 × 15 while, kurtosis has decreased by 58.6%, 76.3% and 93.76% due to increases in the filter window size to 5 × 5, 7 × 7 and 15 × 15 respectively.
Cite this paper: Asal, F. (2019) Creation and Analysis of Earth’s Surface Roughness Maps from Airborne LiDAR Measurements in Downtown Urban Landscape. Journal of Geographic Information System, 11, 212-238. doi: 10.4236/jgis.2019.112015.

[1]   Tian, B., Wang, L. and Koike, K. (2011) Spatial Statistics of Surface Roughness Change Derived from Multi-Scale Digital Elevation Models. Procedia Environmental Sciences, 7, 252-257.

[2]   Hani, M., Fadzil, A., Sathyamoorthy, D. and Asirvadam, V.S. (2011) A Method for Computation of Surface Roughness of Digital Elevation Model Terrains via Multiscale Analysis. Computers & Geosciences, 37, 177-192.

[3]   Brasington, J., Vericat, D. and Rychkov, I. (2012) Modeling River Bed Morphology, Roughness, and Surface Sedimentology Using High Resolution Terrestrial Laser Scanning. Water Resources Research, 48, W11519.

[4]   Grohmann, C.H., Smith, M.J. and Riccomini, C. (2011) Multi-Scale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing, 49, 1200-1213.

[5]   Grohmann, H., Smith, M.J., C.H., and Riccomini, C. (2009) Surface Roughness of Topography: A Multi-Scale Analysis of Landform Elements in Midland Valley, Scotland. Proceedings of Geomorphometry, Zurich, Switzerland, 31 August-2 September 2009.

[6]   Shepard, M.K., Campbell, B.A., Mark, H., Bulmer, M.H., Farr, T.G., Gaddis, L.R. and Plaut, J.J. (2001) The Roughness of Natural Terrain: A Planetary and Remote Sensing Perspective. Journal of Geophysical Research, 106, 32777-32795.

[7]   Verma, A.K. and Bourke, M.C. (2019) A Method Based on Structure-From-Motion Photogrammetry to Generate Sub-Millimetre-Resolution Digital Elevation Models for Investigating Rock Breakdown Features. Earth Surface Dynamics, 7, 45-66.

[8]   Smith, M.W., Quincey, D.J., Dixon, T., Bingham, R.G., Carrivick, J.L., Irvine-Fynn, T.D.L. and Rippin, D.M. (2016) Aerodynamic Roughness of Glacial Ice Surfaces Derived from High-Resolution Topographic Data. Journal of Geophysical Research: Earth Surface, 121, 748-766.

[9]   Hodge, R., Brasington, J. and Richards, K. (2009) Analysing Laser-Scanned Digital Terrain Models of Gravel Bed Surfaces: Linking Morphology to Sediment Transport Processes and Hydraulics. Sedimentology, 56, 2024-2043.

[10]   Taud, H. and Parrot, J.-F. (2005) Measurement of DEM Roughness Using the Local Fractal Dimension. Géomorphologie: Relief, Processus, Environnement, 4, 327-338.

[11]   Zheng, X. and Zhao, K. (2010) A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing. Chinese Geographical Science, 20, 345-352.

[12]   Hebeler, F. and Purves, R.S. (2007) Modeling DEM data Uncertainties for Monte Carlo Simulations of Ice Sheet Models. 5th International Symposium on Spatial Data Quality, ITC, Enschede, 13-17 June 2007.

[13]   Ochoa-Tejeda, V. and Parrot, J.-F. (2017) Slope-Independent Landscape Roughness Attribute Provided by Measurement of Local Contour Line Density. Geoinformatics Geostatistics: An Overview, 5.

[14]   Tay, L.T. and Teng, H.-T. (2008) Roughness Index and Fractal Dimension for Surface Information Extraction. Asian Journal of Geoinformatics, 8, 21-24.

[15]   Dinesh, S. (2008) Computation of Surface Roughness of Mountains Extracted from Digital Elevation Models. Journal of Applied Sciences, 8, 262-270.

[16]   Korzeniowska, K. and Korup, O. (2016) Mapping Gullies Using Terrain-Surface Roughness. AGILE, Helsinki, 14-17 June 2016.

[17]   Fisher, P.F. and Tate, N.J. (2006) Causes and Consequences of Error in Digital Elevation Models. Progress in Physical Geography, 30, 467-489.

[18]   Gallay, M., Lloyd, C. and McKinley, J. (2010) Using Geographically Weighted Regression for Analyzing Elevation Error of High-Resolution DEMs. Accuracy 2010 Symposium, Leicester, UK.

[19]   Thomsen, L.M., Baartman, J.E.M., Barneveld, R.J., Starkloff, T. and Stolte, J. (2015) Soil Surface Roughness: Comparing Old and New Measuring Methods and Application in a Soil Erosion Model. Soil, 1, 399-410.

[20]   Fan, L. and Atkinson, P.M. (2018) A New Multi-Resolution Based Method for Estimating Local Surface Roughness from Point Clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 369-378.

[21]   Mora, O.E., Lenzano, M.G., Toth, C.K., Grejner-Brzezinska, D.A. and Fayne, J.V. (2018) Landslide Change Detection Based on Multi-Temporal Airborne LiDAR-Derived DEMs. Geosciences, 8, 23.

[22]   Höfle, B., Vetter, M., Pfeifer, N., Mandlburger, G. and Stötter, J. (2009) Water surface Mapping from Airborne Laser Scanning Using Signal Intensity and Elevation Data. Earth Surface Processes and Landforms, 34, 1635-1649

[23]   Frankel, K.L. and Dolan, J.F. (2007) Characterizing Arid Region Alluvial Fan Surface Roughness with Airborne Laser Swath Mapping Digital Topographic Data. Journal of Geophysical Research, 112, F02025.

[24]   Dorn, H., Vetter, M. and Höfle, B. (2014) GIS-Based Roughness Derivation for Flood Simulations: A Comparison of Orthophotos, LiDAR and Crowdsourced Geodata. Remote Sensing, 6, 1739-1759.

[25]   Lia, Y., Hub, X., Guanc, H. and Liud, P. (2016) An Efficient Method for Automatic Road Extraction Based on Multiple Features from LiDAR Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B3, 289-293.

[26]   Rottensteiner, F., Sohn, G., Gerke, M. and Wegner, J.D. (2013) ISPRS Test Project on Urban Classification and 3D Building Reconstruction. ISPRS-Commission III-Photogrammetric Computer Vision and Image Analysis, Working Group III/4-3D Scene Analysis.