[1] Bhadauriya, P., Gupta, R., Singh, S. and Bisen, P.S. (2007) Physiological and Biochemical Alterations in a Diazotrophic Cyanobacterium Anabaena cylindrica under NaCl Stress. Current Microbiology, 55, 334-338.
https://doi.org/10.1007/s00284-007-0191-1
[2] Carmichael, W.W. (1992) Cyanobacteria Secondary Metabolites—The Cyanotoxins. Journal of Applied Bacteriology, 72, 445-459.
https://doi.org/10.1111/j.1365-2672.1992.tb01858.x
[3] Zanchett, G. and Oliveira-Filho, E. (2013) Cyanobacteria and Cyanotoxins: From Impacts on Aquatic Ecosystems and Human Health to Anticarcinogenic Effects. Toxins, 5, 1896-1917.
https://doi.org/10.3390/toxins5101896
[4] Kozdeba, M., Borowczyk, J., Zimolag, E., Wasylewski, M., Dziga, D., Madeja, Z. and Drukala, J. (2014) Microcystin-LR Affects Properties of Human Epidermal Skin Cells Crucial for Regenerative Processes. Toxicon, 80, 38-46.
https://doi.org/10.1016/j.toxicon.2014.01.003
[5] Lone, Y., Koiri, R.K. and Bhide, M. (2015) An Overview of the Toxic Effect of Potential Human Carcinogen Microcystin-LR on Testis. Toxicology Reports, 2, 289-296.
https://doi.org/10.1016/j.toxrep.2015.01.008
[6] Zhao, Y., Xie, L. and Yan, Y. (2015) Microcystin-LR Impairs Zebrafish Reproduction by Affecting Oogenesis and Endocrine System. Chemosphere, 120, 115-122.
https://doi.org/10.1016/j.chemosphere.2014.06.028
[7] Hou, J., Su, Y., Lin, W., Guo, H., Xie, P., Chen, J., Gu, Z. and Li, L. (2017) Microcystin-LR Retards Gonadal Maturation through Disrupting the Growth Hormone/In-sulin-Like Growth Factors System in Zebrafish. Ecotoxicology and Environmental Safety, 139, 27-35.
https://doi.org/10.1016/j.ecoenv.2017.01.025
[8] Yoshizawa, S., Matsushima, R., Watanabe, M.F., Harada, K.I., Ichihara, A., Carmichael, W.W. and Fujiki, H. (1990) Inhibition of Protein Phosphatases by Microcystis and Nodularin Associated with Hepatotoxicity. Journal of Cancer Research and Clinical Oncology, 116, 609-614.
https://doi.org/10.1007/BF01637082
[9] Wiedner, C., Visser, P.M., Fastner, J., Metcalf, J.S., Codd, G.A. and Mur, L.R. (2003) Effects of Light on the Microcystin Content of Microcystis Strain PCC 7806. Applied and Environmental Microbiology, 69, 1475-1481.
https://doi.org/10.1128/AEM.69.3.1475-1481.2003
[10] Davis, T.W., Berry, D.L., Boyer, G.L. and Gobler, C.J. (2009) The Effects of Temperature and Nutrients on the Growth and Dynamics of Toxic and Non-Toxic Strains of Microcystis during Cyanobacteria Blooms. Harmful Algae, 8, 715-725.
https://doi.org/10.1016/j.hal.2009.02.004
[11] Wheeler, T. (2014) Lake Erie Not Alone in Suffering from Harmful Algae.
http://www.baltimoresun.com/features/green/blog/bal-lake-eries-water-woes-strike-home-20140805-story.html
[12] D’Anglada, L. (2017) Health and Ecological Effects. U.S. Environmental Protection Agency.
https://www.epa.gov/nutrient-policy-data/health-and-ecological-effects
[13] Paerl, H.W., Fulton, R.S., Moisander, P.H. and Dyble, J. (2001) Harmful Freshwater Algal Blooms, with an Emphasis on Cyanobacteria. The Scientific World Journal, 1, 76-113.
https://doi.org/10.1100/tsw.2001.16
[14] Metcalf, J.S., Hyenstrand, P., Beattie, K.A. and Codd, G.A. (2000) Effects of Physicochemical Variables and Cyanobacterial Extracts on the Immunoassay of Microcystin-LR by Two ELISA Kits. Journal of Applied Microbiology, 89, 532-538.
https://doi.org/10.1046/j.1365-2672.2000.01141.x
[15] Dolman, A.M., Rücker, J., Pick, F.R., Fastner, J., Rohrlack, T., Mischke, U. and Wiedner, C. (2012) Cyanobacteria and Cyanotoxins: The Influence of Nitrogen versus Phosphorus. PLoS ONE, 7, e38757.
https://doi.org/10.1371/journal.pone.0038757
[16] Engström-Öst, J., Repka, S. and Mikkonen, M. (2011) Interactions between Plankton and Cyanobacterium Anabaena with Focus on Salinity, Growth and Toxin Production. Harmful Algae, 10, 530-535.
https://doi.org/10.1016/j.hal.2011.04.002
[17] Tonk, L., Bosch, K., Visser, P.M. and Huisman, J. (2007) Salt Tolerance of the Harmful Cyanobacterium Microcystis aeruginosa. Aquatic Microbial Ecology, 46, 117-123.
https://doi.org/10.3354/ame046117
[18] Ek, P., Ek, B. and Zetterqvist, Ö. (2015) Phosphohistidine Phosphatase 1 (PHPT1) Also Dephosphorylates Phospholysine of Chemically Phosphorylated Histone H1 and Polylysine. Upsala Journal of Medical Sciences, 120, 20-27.
https://doi.org/10.3109/03009734.2014.996720