JWARP  Vol.11 No.4 , April 2019
Microcystin Levels in Selected Cyanobacteria Exposed to Varying Salinity
Abstract: Microcystins produced by cyanobacteria pose a great threat to human health by releasing toxins upon cell death. In the present study, we studied microcystin production in the cyanobacterial strains Anabaena cylindrica (B629 and 2949) and Fremyella diplosiphon (SF33) exposed to 1, 2 and 4 g/L sodium chloride (NaCl). Cultures grown for 7 days in BG11/HEPES medium were pelleted, re-grown in the corresponding NaCl levels, and enzyme linked immunosorbent assay (ELISA) performed. ELISA assays revealed enhanced microcystin production in A. cylindrica B629 exposed to 4 g/L NaCl and A. cylindrica 29414 exposed to 2 and 4 g/L NaCl, after growth in the corresponding NaCl levels for 14 days. We observed a significant decrease (p > 0.05) in microcystin levels in the control strains after exposure to NaCl for 5 days. After exposure to 1, 2, or 4 g/L NaCl for 10 days, no microcystin release was observed in A. cylindrica B629, A. cylindrica 29414 or F. diplosiphon SF33. Sodium dodecyl sulfate polyacrylamide gel electrophoresis identified the presence of an additional band at 120 - 130 kDa in A. cylindrica B629 exposed to 2 and 4 g/L NaCl, and at 14 kDa in cultures amended with 1 and 2 g/L NaCl as well as the untreated control, indicating that exposure to salinity induces alterations in protein expression.
Cite this paper: Walker, D. , Fathabad, S. , Tabatabai, B. , Jafar, S. and Sitther, V. (2019) Microcystin Levels in Selected Cyanobacteria Exposed to Varying Salinity. Journal of Water Resource and Protection, 11, 395-403. doi: 10.4236/jwarp.2019.114023.

[1]   Bhadauriya, P., Gupta, R., Singh, S. and Bisen, P.S. (2007) Physiological and Biochemical Alterations in a Diazotrophic Cyanobacterium Anabaena cylindrica under NaCl Stress. Current Microbiology, 55, 334-338.

[2]   Carmichael, W.W. (1992) Cyanobacteria Secondary Metabolites—The Cyanotoxins. Journal of Applied Bacteriology, 72, 445-459.

[3]   Zanchett, G. and Oliveira-Filho, E. (2013) Cyanobacteria and Cyanotoxins: From Impacts on Aquatic Ecosystems and Human Health to Anticarcinogenic Effects. Toxins, 5, 1896-1917.

[4]   Kozdeba, M., Borowczyk, J., Zimolag, E., Wasylewski, M., Dziga, D., Madeja, Z. and Drukala, J. (2014) Microcystin-LR Affects Properties of Human Epidermal Skin Cells Crucial for Regenerative Processes. Toxicon, 80, 38-46.

[5]   Lone, Y., Koiri, R.K. and Bhide, M. (2015) An Overview of the Toxic Effect of Potential Human Carcinogen Microcystin-LR on Testis. Toxicology Reports, 2, 289-296.

[6]   Zhao, Y., Xie, L. and Yan, Y. (2015) Microcystin-LR Impairs Zebrafish Reproduction by Affecting Oogenesis and Endocrine System. Chemosphere, 120, 115-122.

[7]   Hou, J., Su, Y., Lin, W., Guo, H., Xie, P., Chen, J., Gu, Z. and Li, L. (2017) Microcystin-LR Retards Gonadal Maturation through Disrupting the Growth Hormone/In-sulin-Like Growth Factors System in Zebrafish. Ecotoxicology and Environmental Safety, 139, 27-35.

[8]   Yoshizawa, S., Matsushima, R., Watanabe, M.F., Harada, K.I., Ichihara, A., Carmichael, W.W. and Fujiki, H. (1990) Inhibition of Protein Phosphatases by Microcystis and Nodularin Associated with Hepatotoxicity. Journal of Cancer Research and Clinical Oncology, 116, 609-614.

[9]   Wiedner, C., Visser, P.M., Fastner, J., Metcalf, J.S., Codd, G.A. and Mur, L.R. (2003) Effects of Light on the Microcystin Content of Microcystis Strain PCC 7806. Applied and Environmental Microbiology, 69, 1475-1481.

[10]   Davis, T.W., Berry, D.L., Boyer, G.L. and Gobler, C.J. (2009) The Effects of Temperature and Nutrients on the Growth and Dynamics of Toxic and Non-Toxic Strains of Microcystis during Cyanobacteria Blooms. Harmful Algae, 8, 715-725.

[11]   Wheeler, T. (2014) Lake Erie Not Alone in Suffering from Harmful Algae.

[12]   D’Anglada, L. (2017) Health and Ecological Effects. U.S. Environmental Protection Agency.

[13]   Paerl, H.W., Fulton, R.S., Moisander, P.H. and Dyble, J. (2001) Harmful Freshwater Algal Blooms, with an Emphasis on Cyanobacteria. The Scientific World Journal, 1, 76-113.

[14]   Metcalf, J.S., Hyenstrand, P., Beattie, K.A. and Codd, G.A. (2000) Effects of Physicochemical Variables and Cyanobacterial Extracts on the Immunoassay of Microcystin-LR by Two ELISA Kits. Journal of Applied Microbiology, 89, 532-538.

[15]   Dolman, A.M., Rücker, J., Pick, F.R., Fastner, J., Rohrlack, T., Mischke, U. and Wiedner, C. (2012) Cyanobacteria and Cyanotoxins: The Influence of Nitrogen versus Phosphorus. PLoS ONE, 7, e38757.

[16]   Engström-Öst, J., Repka, S. and Mikkonen, M. (2011) Interactions between Plankton and Cyanobacterium Anabaena with Focus on Salinity, Growth and Toxin Production. Harmful Algae, 10, 530-535.

[17]   Tonk, L., Bosch, K., Visser, P.M. and Huisman, J. (2007) Salt Tolerance of the Harmful Cyanobacterium Microcystis aeruginosa. Aquatic Microbial Ecology, 46, 117-123.

[18]   Ek, P., Ek, B. and Zetterqvist, Ö. (2015) Phosphohistidine Phosphatase 1 (PHPT1) Also Dephosphorylates Phospholysine of Chemically Phosphorylated Histone H1 and Polylysine. Upsala Journal of Medical Sciences, 120, 20-27.