MSA  Vol.10 No.4 , April 2019
Formation of Copper Nickel Bimetallic Nanoalloy Film Using Precursor Inks
Abstract: Precursor (Metal-organic decomposition (MOD)) inks are used to fabricate 2D and 3D printed conductive structures directly onto a substrate. By formulating a nanoalloy structure containing multiple metals, the opportunity to modify chemical and physical properties exists. In this paper, a copper-nickel bimetallic nanoalloy film was fabricated by mixing copper and nickel precursor inks and sintering them in vacuum. The individual elemental inks were formulated and characterized using SEM, EDS, and XRD. During thermal processing, elemental copper forms first and is followed by the formation of bimetallic copper-nickel alloy. The encapsulation of the underlying copper by the nickel-rich alloy provides excellent oxidation resistance. No change in film resistance was observed after the film was exposed to an oxygen plasma. Nanoalloy films printed using reactive metallic inks have a variety of important applications involving local control of alloy composition. Examples include facile formation of layered nanostructures, and electrical conductivity with oxidative stability.
Cite this paper: Mahajan, C. , Marotta, A. , Kahn, B. , Irving, M. , Gupta, S. , Hailstone, R. , Williams, S. and Cormier, D. (2019) Formation of Copper Nickel Bimetallic Nanoalloy Film Using Precursor Inks. Materials Sciences and Applications, 10, 349-363. doi: 10.4236/msa.2019.104026.

[1]   Kahn, B.E. (2015) Patterning Processes for Flexible Electronics. Proceedings of the IEEE, 103, 497-517.

[2]   Jung, M., Kim, J., Noh, J., Lim, N., Lim, C., Lee, G., Kim, J., Kang, H., Jung, K. and Leonard, A.D. (2010) All-Printed and Roll-to-Roll-Printable 13.56-MHz-Operated 1-Bit RF Tag on Plastic Foils. IEEE Transactions on Electron Devices, 57, 571-580.

[3]   Sangoi, R., Smith, C.G., Seymour, M.D., Venkataraman, J.N., Clark, D.M., Kleper, M.L. and Kahn, B.E. (2005) Printing Radio Frequency Identification (RFID) Tag Antennas Using Inks Containing Silver Dispersions. Journal of Dispersion Science and Technology, 25, 513-521.

[4]   Montoya, T.P. and Kirshchenmann, K.J. (2007) Antennas with Discrete Resistive Loading Built by Direct-Write Fabrication. 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, 9-15 June 2007, 4080-4083.

[5]   Yang, L., Rida, A., Vyas, R. and Tentzeris, M.M. (2007) RFID Tag and RF Structures on a Paper Substrate Using Inkjet-Printing Technology. IEEE Transactions on Microwave Theory and Techniques, 55, 2894-2901.

[6]   Vaillancourt, J., Zhang, H., Vasinajindakaw, P., Xia, H., Lu, X., Han, X., Janzen, D.C., Shih, W.-S., Jones, C.S. and Stroder, M. (2008) All Ink-Jet-Printed Carbon Nanotube Thin-Film Transistor on a Polyimide Substrate with an Ultrahigh Operating Frequency of Over 5 GHz. Applied Physics Letters, 93, Article ID: 243301.

[7]   Noguchi, Y., Sekitani, T. and Someya, T. (2007) Printed Shadow Masks for Organic Transistors. Applied Physics Letters, 91, Article ID: 133502.

[8]   Jabbour, G.E., Radspinner, R. and Peyghambarian, N. (2001) Screen Printing for the Fabrication of Organic Light-Emitting Devices. IEEE Journal of Selected Topics in Quantum Electronics, 7, 769-773.

[9]   Jo, J., Yu, J.-S., Lee, T.-M. and Kim, D.-S. (2009) Fabrication of Printed Organic Thin-Film Transistors Using Roll Printing. Japanese Journal of Applied Physics, 48, Article ID: 04C181.

[10]   Kopola, P., Tuomikoski, M., Suhonen, R. and Maaninen, A. (2009) Gravure Printed Organic Light Emitting Diodes for Lighting Applications. Thin Solid Films, 517, 5757-5762.

[11]   Liu, R., Ding, H., Lin, J., Shen, F., Cui, Z. and Zhang, T. (2012) Fabrication of Platinum-Decorated Single-Walled Carbon Nanotube Based Hydrogen Sensors by Aerosol Jet Printing. Nanotechnology, 23, Article ID: 505301.

[12]   Wei, L.-J. and Oxley, C.H. (2016) Carbon Based Resistive Strain Gauge Sensor Fabricated on Titanium Using Micro-Dispensing Direct Write Technology. Sensors and Actuators A: Physical, 247, 389-392.

[13]   Khan, S., Lorenzelli, L. and Dahiya, R. (2014) Screen Printed Flexible Pressure Sensors Skin. 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014), Saratoga Springs, NY, 19-21 May 2014, 219-224.

[14]   Shi, C., Shan, X., Tarapata, G., Jachowicz, R., Weremczuk, J. and Hui, H. (2011) Fabrication of Wireless Sensors on Flexible Film Using Screen Printing and via Filling. Microsystem Technologies, 17, 661-667.

[15]   Deng, D., Jin, Y., Cheng, Y., Qi, T. and Xiao, F. (2013) Copper Nanoparticles: Aqueous Phase Synthesis and Conductive Films Fabrication at Low Sintering Temperature. ACS Applied Materials & Interfaces, 5, 3839-3846.

[16]   Joo, S.-J., Park, S.-H., Moon, C.-J. and Kim, H.-S. (2015) A Highly Reliable Copper Nanowire/Nanoparticle Ink Pattern with High Conductivity on Flexible Substrate Prepared via a Flash Light-Sintering Technique. ACS Applied Materials & Interfaces, 7, 5674-5684.

[17]   Joo, S.-J., Hwang, H.-J. and Kim, H.-S. (2014) Highly Conductive Copper Nano/Microparticles Ink via Flash Light Sintering for Printed Electronics. Nanotechnology, 25, Article ID: 265601.

[18]   Ohlund, T., Schuppert, A.K., Hummelgard, M., Backstrom, J., Nilsson, H.-E. and Olin, H. (2015) Inkjet Fabrication of Copper Patterns for Flexible Electronics: Using Paper with Active Precoatings. ACS Applied Materials & Interfaces, 7, 18273-18282.

[19]   Kim, H.-S., Dhage, S.R., Shim, D.-E. and Hahn, H.T. (2009) Intense Pulsed Light Sintering of Copper Nanoink for Printed Electronics. Applied Physics A: Materials Science & Processing, 97, 791-798.

[20]   Lee, Y., Choi, J.-R., Lee, K.-J., Stott, N.E. and Kim, D. (2008) Large-Scale Synthesis of Copper Nanoparticles by Chemically Controlled Reduction for Applications of Inkjet-Printed Electronics. Nanotechnology, 19, Article ID: 415604.

[21]   Li, Y., Wu, Y. and Ong, B.S. (2005) Facile Synthesis of Silver Nanoparticles Useful for Fabrication of High-Conductivity Elements for Printed Electronics. Journal of the American Chemical Society, 127, 3266-3267.

[22]   Lee, H.-H., Chou, K.-S. and Huang, K.-C. (2005) Inkjet Printing of Nanosized Silver Colloids. Nanotechnology, 16, 2436.

[23]   Zhang, Z., Zhang, X., Xin, Z., Deng, M., Wen, Y. and Song, Y. (2011) Synthesis of Monodisperse Silver Nanoparticles for Ink-Jet Printed Flexible Electronics. Nanotechnology, 22, Article ID: 425601.

[24]   Chen, C.-N., Chen, C.-P., Dong, T.-Y., Chang, T.-C., Chen, M.-C., Chen, H.-T. and Chen, I. (2012) Using Nanoparticles as Direct-Injection Printing Ink to Fabricate Conductive Silver Features on a Transparent Flexible PET Substrate at Room Temperature. Acta Materialia, 60, 5914-5924.

[25]   Zope, K.R., Cormier, D. and Williams, S. (2018) Reactive Silver Oxalate Ink Composition with Enhanced Curing Conditions for Flexible Substrates. ACS Applied Materials & Interfaces, 10, 3830-3834.

[26]   Jeong, S., Song, H.C., Lee, W.W., Choi, Y., Lee, S.S. and Ryu, B.-H. (2010) Combined Role of Well-Dispersed Aqueous Ag Ink and the Molecular Adhesive Layer in Inkjet Printing the Narrow and Highly Conductive Ag Features on a Glass Substrate. The Journal of Physical Chemistry C, 114, 22277-22283.

[27]   Calvo, F. (2013) Nanoalloys: From Fundamentals to Emergent Applications. Elsevier, Massachusetts.

[28]   Peng, Z. and Yang, H. (2008) Ag-Pt Alloy Nanoparticles with the Compositions in the Miscibility Gap. Journal of Solid State Chemistry, 181, 1546-1551.

[29]   Andrews, M.P. and O’Brien, S.C. (1992) Gas-Phase “Molecular Alloys” of bulk Immiscible Elements: Iron-Silver (FexAgy). The Journal of Physical Chemistry, 96, 8233-8241.

[30]   Chatterjee, J., Bettge, M., Haik, Y. and Chen, C.J. (2005) Synthesis and Characterization of Polymer Encapsulated Cu-Ni Magnetic Nanoparticles for Hyperthermia Applications. Journal of Magnetism and Magnetic Materials, 293, 303-309.

[31]   Kline, T.L., Xu, Y.-H., Jing, Y. and Wang, J.-P. (2009) Biocompatible High-Moment FeCo-Au Magnetic Nanoparticles for Magnetic Hyperthermia Treatment Optimization. Journal of Magnetism and Magnetic Materials, 321, 1525-1528.

[32]   W, Q.-W., Y, J.-L., R, J.-F., H, M.M. and Y, C.-H. (1990) Structure and Catalytic Properties of Cu-Ni Bimetallic Catalysts for Hydrogenation. Catalysis Letters, 4, 63-74.

[33]   He, J., Ichinose, I., Kunitake, T., Nakao, A., Shiraishi, Y. and Toshima, N. (2003) Facile Fabrication of Ag-Pd Bimetallic Nanoparticles in Ultrathin TiO2-Gel Films: Nanoparticle Morphology and Catalytic Activity. Journal of the American Chemical Society, 125, 11034-11040.

[34]   Alloyeau, D., Mottet, C. and Ricolleau, C. (2012) Nanoalloys: Synthesis, Structure and Properties. Springer Science & Business Media, Berlin/Heidelberg, Germany.

[35]   Ferrer, D., Torres-Castro, A., Gao, X., Sepulveda-Guzman, S., Ortiz-Mendez, U. and Jose-Yacaman, M. (2007) Three-Layer Core/Shell Structure in Au-Pd Bimetallic Nanoparticles. Nano Letters, 7, 1701-1705.

[36]   Yamauchi, T., Tsukahara, Y., Sakata, T., Mori, H., Yanagida, T., Kawai, T. and Wada, Y. (2010) Magnetic Cu-Ni (Core-Shell) Nanoparticles in a One-Pot Reaction under Microwave Irradiation. Nanoscale, 2, 515-523.

[37]   Choi, E., Lee, S. and Piao, Y. (2015) Asolventless Mix-Bake-Wash Approach to the Facile Controlled Synthesis of Core-Shell and Alloy Ag-Cu Bimetallic Nanoparticles. CrystEngComm, 17, 5940-5946.

[38]   Badawy, W.A., Ismail, K.M. and Fathi, A.M. (2005) Effect of Ni Content on the Corrosion Behavior of Cu-Ni Alloys in Neutral Chloride Solutions. Electrochimica Acta, 50, 3603-3608.

[39]   Kim, H., Lu, C., Worrell, W., Vohs, J. and Gorte, R. (2002) Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-Oxide Fuel Cells. Journal of the Electrochemical Society, 149, A247-A250.

[40]   Qiu, R., Zhang, X.L., Qiao, R., Li, Y., Kim, Y.I. and Kang, Y.S. (2007) CuNi Dendritic Material: Synthesis, Mechanism Discussion, and Application as Glucose Sensor. Chemistry of Materials, 19, 4174-4180.

[41]   Hashemizadeh, S.A. and Biglari, M. (2018) Cu: Ni Bimetallic Nanoparticles: Facile Synthesis, Characterization and Its Application in Photodegradation of Organic dyes. Journal of Materials Science: Materials in Electronics, 29, 13025-13031.

[42]   Kuznetsov, A.A., Leontiev, V.G., Brukvin, V.A., Vorozhtsov, G.N., Kogan, B.Y., Shlyakhtin, O.A., Yunin, A.M., Tsybin, O.I. and Kuznetsov, O.A. (2007) Local Radiofrequency-Induced Hyperthermia Using CuNi Nanoparticles with Therapeutically Suitable Curie Temperature. Journal of Magnetism and Magnetic Materials, 311, 197-203.

[43]   Songping, W., Li, J., Jing, N., Zhenou, Z. and Song, L. (2007) Preparation of Ultra Fine Copper-Nickel Bimetallic Powders for Conductive Thick Film. Intermetallics, 15, 1316-1321.

[44]   Ahmed, J., Ramanujachary, K.V., Lofland, S.E., Furiato, A., Gupta, G., Shivaprasad, S. and Ganguli, A.K. (2008) Bimetallic Cu-Ni Nanoparticles of Varying Composition (CuNi3, CuNi, Cu3Ni). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 331, 206-212.

[45]   Feng, J. and Zhang, C.-P. (2006) Preparation of Cu-Ni Alloy Nanocrystallites in Water-in-Oil Microemulsions. Journal of Colloid and Interface Science, 293, 414-420.

[46]   Souilah, S., Alleg, S., Bououdina, M., Sunol, J. and Hlil, E. (2017) Magnetic and Structural Properties of the Nanostructured Cu50Ni50 Powders. Journal of Superconductivity and Novel Magnetism, 30, 1927-1935.

[47]   Bonet, F., Grugeon, S., Dupont, L., Urbina, R.H., Guery, C. and Tarascon, J. (2003) Synthesis and Characterization of Bimetallic Ni-Cu Particles. Journal of Solid State Chemistry, 172, 111-115.

[48]   Chen, L., Xu, H., Cui, H., Zhou, H., Wan, H. and Chen, J. (2017) Preparation of Cu-Ni Bimetallic Nanoparticles Surface-Capped with Dodecanethiol and Their Tribological Properties as Lubricant Additive. Particuology, 34, 89-96.

[49]   Jung, C.-H., Lee, H.-G., Kim, C.-J. and Bhaduri, S. (2003) Synthesis of Cu-Ni Alloy Powder Directly from Metal Salts Solution. Journal of Nanoparticle Research, 5, 383-388.

[50]   Pál, E., Kun, R., Schulze, C., Zollmer, V., Lehmhus, D., Baumer, M. and Busse, M. (2012) Composition-Dependent Sintering Behaviour of Chemically Synthesised CuNi Nanoparticles and Their Application in Aerosol Printing for Preparation of Conductive Microstructures. Colloid and Polymer Science, 290, 941-952.

[51]   Pál, E., Zollmer, V., Lehmhus, D. and Busse, M. (2011) Synthesis of Cu0.55Ni0.44Mn0.01 Alloy Nanoparticles by Solution Combustion Method and Their Application in Aerosol Printing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384, 661-667.

[52]   Ginley, D.S., Curtis, C.J., Miedaner, A., Van Hest, M.F.A.M. and Kaydanova, T. (2014) Metal Inks. US Patent No. 8641931 B2.

[53]   Farraj, Y., Grouchko, M. and Magdassi, S. (2015) Self-Reduction of a Copper Complex MOD Ink for Inkjet Printing Conductive Patterns on Plastics. Chemical Communications, 51, 1587-1590.

[54]   Shevchenko, E.V., Talapin, D.V., Schnablegger, H., Kornowski, A., Festin, O., Svedlindh, P., Haase, M. and Weller, H. (2003) Study of Nucleation and Growth in the Organometallic Synthesis of Magnetic Alloy Nanocrystals: The Role of Nucleation Rate in Size Control of CoPt3 Nanocrystals. Journal of the American Chemical Society, 125, 9090-9101.

[55]   Gupta, S. (1998) Peak Decomposition Using Pearson Type VII Function. Journal of Applied Crystallography, 31, 474-476.

[56]   Cullity, B.D. (1978) Elements of X-Ray Diffraction. Addison-Wesley Publishing Company, Inc., Massachusetts.