[1] Kato, T. (1949) On the Upper and Lower Bounds of Eigenvalues. Journal of the Physical Society of Japan, 4, 334-339.
https://doi.org/10.1143/JPSJ.4.334
[2] Strauss, M. (2013) The Second Order Spectrum and Optimal Convergence. Mathematics of Computation, 82, 2305-2325.
https://doi.org/10.1090/S0025-5718-2013-02693-2
[3] Boulton, L. and Strauss, M. (2011) On the Convergence of second order spectra and Multiplicity. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences, 467, 264-284.
https://doi.org/10.1098/rspa.2010.0233
[4] Boulton, L. and Strauss, M. (2007) Stability of Quadratic Projectione Methods. Operators and Matrices, 17, 217-233.
https://doi.org/10.7153/oam-01-15
[5] Boulton, L. and Hobiny, A. (2013) On the Quality of Complementary Bounds for Eigenvalues. Calcolo, 52, 577-601.
https://doi.org/10.1007/s10092-014-0131-y
[6] Davies, E.B. and Plum, M. (2004) Spectral Pollution. IMA Journal of Numerical Analysis, 24, 417-438.
https://doi.org/10.1093/imanum/24.3.417
[7] Davies, E.B. (1996) Spectral Theory and Differential Operators. Cambridge University Press, Cambridge.
[8] Levitin, M. and Shargorodsky, E. (2004) Spectral Pollution and second order relative Spectra for Self-Adjoint Operators. IMA Journal of Numerical Analysis, 24, 393-416.
https://doi.org/10.1093/imanum/24.3.393
[9] Boulton, L. and Levitin, M. (2007) On Approximation of the Eigenvalue of Perturbed Periodic Schrodinger Operators. Journal of Physics A Mathematical and Theoretical, 40, 9319.
https://doi.org/10.1088/1751-8113/40/31/010
[10] Boulton, L. and Hobiny, A. (2016) On the Convergence of the Quadratic Method. IMA Journal of Numerical Analysis, 36, 1310-1333.
https://doi.org/10.1093/imanum/drv036
[11] Boulton, L., Garcia del Moral, M.P. and Restuccia, A. (2012) Spectral Properties in Super Symmetric Matrix Models. Nuclear Physics B, 856, 716-747.
https://doi.org/10.1016/j.nuclphysb.2011.11.017