A New Fourth Order Difference Approximation for the Solution of Three-dimensional Non-linear Biharmonic Equations Using Coupled Approach

References

[1] J. Smith, “The Coupled Equation Approach to the Nu- merical Solution of the Biharmonic Equation by Finite Differences,” SIAM Journal on Numerical Analysis, Vol. 7, No. 1, 1970, pp. 104-111. doi:10.1137/0707005

[2] L. W. Ehrlich, “Solving the Biharmonic Equation as Cou- pled Finite Difference Equations,” SIAM Journal on Nu- merical Analysis, Vol. 8, No. 2, 1971, pp. 278-287.
doi:10.1137/0708029

[3] L. W. Ehrlich, “Point and Block SOR Applied to a Cou- pled Set of Difference Equations,” Computing, Vol. 12, No. 3, 1974, pp. 181-194. doi:10.1007/BF02293104

[4] L. Bauer and E. L. Riess, “Block Five Diagonal Matrices and the Fast Numerical Solution of the Biharmonic Equa- tion,” Mathematics of Computation, Vol. 26, No. 118, 1972, pp. 311-326. doi:10.1090/S0025-5718-1972-0312751-9

[5] R. Glowinski and O. Pironneau, “Numerical Methods for the First Biharmonic Equations and for the Two-Dimen- sional Stokes Problems,” SIAM Review, Vol. 21, No. 2, 1979, pp. 167-212. doi:10.1137/1021028

[6] Y. Kwon, R. Manohar and J. W. Stephenson, “Single Cell Fourth Order Methods for the Biharmonic Equation,” Con- gress Numerantium, Vol. 34, 1982, pp. 475-482.

[7] J. W. Stephenson, “Single Cell Discretization of Order Two and Four for Biharmonic Problems,” Journal of Com- putational Physics, Vol. 55, No. 1, 1984, pp. 65-80.
doi:10.1016/0021-9991(84)90015-9

[8] R. K. Mohanty and P. K. Pandey, “Difference Methods of Order Two and Four for Systems of Mildly Non-linear Biharmonic Problems of Second Kind in Two Space Di- mensions,” Numerical Methods for Partial Differential Equations, Vol. 12, No. 6, 1996, pp. 707-717.
doi:10.1002/(SICI)1098-2426(199611)12:6<707::AID-NUM4>3.0.CO;2-W

[9] R. K. Mohanty, M. K. Jain and P. K. Pandey, “Finite Dif- ference Methods of Order Two and Four for 2D Nonlin- ear Biharmonic Problems of First Kind,” International Journal of Computer Mathematics, Vol. 61, No. 1-2, 1996, pp. 155-163. doi:10.1080/00207169608804507

[10] R. K. Mohanty and P. K. Pandey, “Families of Accurate Discretizations of Order Two and Four for 3D Mildly Nonlinear Biharmonic Problems of Second Kind,” Inter- national Journal of Computer Mathematics, Vol. 68, No. 3-4, 1998, pp. 363-380. doi:10.1080/00207169808804702

[11] D. J. Evans and R. K. Mohanty, “Block Iterative Methods for the Numerical Solution of Two-dimensional Nonlin- ear Biharmonic Equations,” International Journal of Com- puter Mathematics, Vol. 69, No. 3-4, 1998, pp. 371-390.
doi:10.1080/00207169808804729

[12] R. K. Mohanty, D. J. Evans and P. K. Pandey, “Block Ite- rative Methods for the Numerical Solution of Three Di- mensional Mildly Nonlinear Biharmonic Problems of First Kind,” International Journal of Computer Mathe- matics, Vol. 77, No. 2, 2001, pp. 319-332.
doi:10.1080/00207160108805068

[13] S. Singh, D. Khattar and R. K. Mohanty, “A New Cou- pled Approach High Accuracy Numerical Method for the Solution of 2D Nonlinear Biharmonic Equations,” Neural Parallel and Scientific Computations, Vol. 17, 2009, pp. 239-256.

[14] D. Khattar, S. Singh and R. K. Mohanty, “A New Cou- pled Approach High Accuracy Numerical Method for the Solution of 3D Non-Linear Biharmonic Equations,” Ap- plied Mathematics and Computations, Vol. 215, No. 8, 2009, pp. 3036-3044. doi:10.1016/j.amc.2009.09.052

[15] R. K. Mohanty, “A New High Accuracy Finite Difference Discretization for the Solution of 2D Non-Linear Bihar- monic Equations Using Coupled Approach,” Numerical Methods for Partial Differential Equations, Vol. 26, No. 4, 2010, pp. 931-944. doi:10.1002/num.204605

[16] R. K. Mohanty, M. K. Jain and B. N. Mishra, “A Com- pact Discretization of O(h4) for Two-Dimensional Non- linear Triharmonic Equations,” Physica Scripta, Vol. 84, No. 2, 2011, pp. 025002.
doi:10.1088/0031-8949/84/02/025002

[17] R. K. Mohanty and S. Dey, “Single Cell Fourth Order Dif- ference Approximations for (?u/?x), (?u/?y) and (?u/?z) of the Three Dimensional Quasi-Linear Elliptic Equation,” Numerical Methods for Partial Differential Equations, Vol. 16, No. 5, 2000, pp. 417-425.
doi:10.1002/1098-2426(200009)16:5<417::AID-NUM1>3.0.CO;2-S

[18] R. K. Mohanty, S. Karaa and U. Arora, “Fourth Order Nine Point Unequal Mesh Discretization for the Solution of 2D Non-linear Elliptic Partial Differential Equations,” Neu- ral Parallel and Scientific Computations, Vol. 14, 2006, pp. 453-470.

[19] R. K. Mohanty and S. Singh, “A New Highly Accurate Dis- cretization for Three Dimensional Singularly Perturbed Non-linear Elliptic Partial Differential Equations,” Nume- rical Methods for Partial Differential Equations, Vol. 22, No. 6, 2006, pp. 1379-1395. doi:10.1002/num.20160

[20] L. A. Hageman and D. M. Young, “Applied Iterative Me- thods,” Dover Publications, New York, 2004.

[21] M. K. Jain, “Numerical Solution of Differential Equa- tions,” 2nd Edition, John Wiley, New Delhi, 1984.

[22] C. T. Kelly, “Iterative Methods for Linear and Non-Linear Equations,” SIAM Publications, Philadelphia, 1995.

[23] Y. Saad, “Iterative Methods for Sparse Linear Systems,” SIAM Publications, Philadelphia, 2003.
doi:10.1137/1.9780898718003

[24] G. Meurant, “Computer Solution of Large Linear Systems,” North-Holland, Amsterdam, 1999.

[25] W. F. Spotz and G. F. Carey, “High Order Compact Scheme for the Steady Stream-Function Vorticity Equations,” In- ternational Journal for Numerical Methods in Enginee- ring, Vol. 38, No. 20, 1995, pp. 3497-3512.
doi:10.1002/nme.1620382008