First Order Convergence Analysis for Sparse Grid Method in Stochastic Two-Stage Linear Optimization Problem

References

[1] J. R. Birge and F. Louveaux, “Introduction to Stochastic Programming,” Springer, New York, 1997.

[2] S. W. Wallace and W. T. Ziemba, Eds., “Applications of Stochastic Programming,” Society for Industrial and Applied Mathematics, 2005.

[3] A. J. King and R. J.-B Wets, “Epi-Convergency of Con- vex Stochastic Programs,” Stochastic and Stochastic Re- ports, Vol. 34, 1991, pp. 83-92.

[4] A. J. King and R. T. Rockafellar, “Asymptotic Theory for Solutions in Statistical Estimation and Stochastic Pro- gramming,” Mathematics for Operations Research, Vol. 18, No. 1, 1993, pp. 148-162. doi:10.1287/moor.18.1.148

[5] A. Shapiro, “Asymptotic Analysis of Stochastic Programs,” Annals of Operations Resesrch, Vol. 30, No. 1, 1991, pp. 169-186. doi:10.1007/BF02204815

[6] J. Dupacova and R. Wets, “Asymptotic Behavior of Sta- tistical Estimators and of Optimal Solutions of Stochastic Optimization Problems,” Annals of Statistics, Vol. 16, No. 4, 1988, pp. 1517-1549. doi:10.1214/aos/1176351052

[7] T. Pennanen and M. Koivu, “Epi-Convergent Discretiza- tion of Stochastic Programs via Integration Quadratures,” Numerische Mathematik, Vol. 100, No. 1, 2005, pp. 141- 163. doi:10.1007/s00211-004-0571-4

[8] S. A. Smolyak, “Interpolation and Quadrature Formula for the Class and ,” Doklady Akademii Nauk SSSR, Vol. 131, 1960, pp. 1028-1031. (in Russian, Eng- lish Translation: Soviet Mathematica Doklady, Vol. 4, 1963, pp. 240-243).

[9] T. Gerstner and M. Griebel, “Numerical Integration Us- ing Sparse Grid,” Numerical Algorithms, Vol. 18, No. 3-4, 1998, pp. 209-232. doi:10.1023/A:1019129717644

[10] M. Chen and S. Mehrotra, “Epiconvergent Scenario Gen- eration Method for Stochastic Problems via Sparse Grid,” Stochastic Programming E-Print Series, Vol. 2008, No. 7, 2008.

[11] L. C. Evans, “Partial Differential Equations,” American Mathematical Society, Vol. 37, No. 3, 1998, pp. 363-367.

[12] G. W. Wasilkowsi and H. Wozniakowski, “Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems,” Journal of Complexity, Vol. 11, No. 1, 1995, pp. 1-56. doi:10.1006/jcom.1995.1001

[13] H. Brass and G. H¨ammerlin, Eds., “Bounds for Peano kernels,” Vol. 112, Birkh?user, Basel, 1993, pp. 39-55.

[14] H. Wozniakowski, “Information-Based Complexity,” An- nual Review of Computer Science, Vol. 1, No. 1, 1986, pp. 319-380. doi:10.1146/annurev.cs.01.060186.001535

[15] C. Roos, T. Terlaky and J.-P. Vial, “Interior Point Methods for Linear Optimization,” Springer, New York, 1997.

[16] N. Megiddo, “Progress in Mathematical Programming, Chapter Pathways to the Optimal Set in Linear Program- ming,” Springer-Verlag, New York, 1989, p. 132.

[17] A. V. Fiacco, “Introduction to Sensitivity and Stability Ana- lysis in Nonlinear Programming,” Academic Press, New York, 1983.

[18] O. Güler, D. den Hertog, C. Roos and T. Terlaky, “De- generacy in Interior Point Methods for Linear Program- ming: A Survey,” Annals of Operations Research, Vol. 46-47, No. 1, 1993, pp. 107-138.
doi:10.1007/BF02096259

[19] Y. Nesterov and A. Nemirovskii, “Interior Point Polyno- mial Algorithms in Convex Programming,” SIAM, Philadelphia, 1994.

[20] J. Renegar, “A Mathematical View of Interior-Point Me- thods in Convex Optimization,” SIAM, Philadelphia, 2001.

[21] S. J. Wright, “Primal-Dual Interior-Point Methods,” SIAM, Philadelphia, 1997.

[22] W. R?misch, “An Approximation Method in Stochastic Optimal Control,” In: Optimization Techniques, Part 1, Lecture Notes in Control and Information Sciences, Sprin- ger-Verlag, New York, 1980, pp. 169-178.

[23] H. Attouch, “Variational Convergence for Functions and Operators,” Pitman (Advanced Publishing Programs), 1984.

[24] H. Attouch and R. J.-B. Wets, “Quantitative Stability of Variational Systems: I. The Epigraphical Distance,” Tran- sactions of the American Mathematical Society, Vol. 328, No. 2, 1991, pp. 695-729. doi:10.2307/2001800

[25] P. Kall, “Approximation to Optimization Problems: An Elementary Review,” Mathematics of Operations Re- search, Vol. 11, No. 1, 1998, pp. 9-18.
doi:10.1287/moor.11.1.9

[26] T.-W. Ma, “Higher Chain Formula Proved by Combina- torics,” The Electronic Journal of Combinatorics, Vol. 16, No. 21, 2009.