An Efficient Direct Method to Solve the Three Dimensional Poisson’s Equation

References

[1] L. Collatz, “The Numerical Treatment of Differential Equa- tions,” Springer Verlag, Berlin, 1960.

[2] M. K. Jain, “Numerical Solution of Differential Equa- tions,” New Age International ltd, New Delhi, 1984.

[3] R. Haberman, “Elementary Applied Partial Differential Equations with Fourier Series and Boundary Value Prob- lems,” Prentice-Hall Inc., Saddle River, 1987.

[4] T. Myint-U and L. Debnath, “Linear Partial Differential Equations for Scientists and Engineers,” Birkhauser, Bos- ton, 2007

[5] G. D. Smith, “Numerical Solutions of Partial Differential Equations: Finite Difference Methods,” Oxford Univer- sity Press, New York, 1985.

[6] G. H. Golub and C. F. van Loan, “Matrix Computations,” Johns Hopkins University Press, Baltimore, 1989.

[7] J. Stoer and R. Bulirsch, “Introduction to Numerical Ana- lysis,” Springer-Verlag, New York, 2002.

[8] R. W. Hockney, “A Fast Direct Solution of Poisson Equa- tion Using Fourier Analysis,” Journal of ACM, Vol. 12, No. 1, 1965, pp. 95-113. doi:10.1145/321250.321259

[9] W. W. Lin, “Lecture Notes of Matrix Computations,” Na- tional Tsing Hua University, Hsinchu, 2008.

[10] B. L. Buzbee, G. H. Golub and C. W. Nielson, “On Di- rect Methods for Solving Poisson’s Equations,” SIAM Journal on Numerical Analysis, Vol. 7, No. 4, 1970, pp. 627-656. doi:10.1137/0707049

[11] A. Averbuch, M. Israeli and L. Vozovoi, “A Fast Pois- son’s Solver of Arbitrary Order Accuracy in Rectangular regions,” SIAM Journal on Scientific Computing, Vol. 19, No. 3, 1998, pp. 933-952.
doi:10.1137/S1064827595288589

[12] A. McKenney, L. Greengard and A. Mayo, “A Fast Pois- son Solver for Complex Geometries,” Journal of Compu- tation Physics, Vol. 118, No. 2, 1996, pp. 348-355.
doi:10.1006/jcph.1995.1104

[13] G. Skolermo, “A Fourier Method for Numerical Solution of Poisson’s Equation,” Mathematics of Computation, Vol. 29, No. 131, 1975, pp. 697-711.

[14] L. Greengard and J. Y. Lee, “A Direct Adaptive Poisson Solver of Arbitrary Order Accuracy,” Journal of Compu- tation Physics, Vol. 125, No. 2, 1996, pp. 415-424.
doi:10.1006/jcph.1996.0103

[15] W. F. Spotz and G. F. Carey, “A High-Order Compact Formulation for the 3D Poisson Equation,” Numerical Methods for Partial Differential Equations, Vol. 12, No. 2, 1996, pp. 235-243.
doi:10.1002/(SICI)1098-2426(199603)12:2<235::AID-NUM6>3.0.CO;2-R

[16] E. Braverman, M. Israeli, A. Averbuch and L. Vozovoi, “A Fast 3D Poisson Solver of Arbitrary Order Accuracy,” Journal of Computation Physics, Vol. 144, No. 1, 1998, pp. 109-136. doi:10.1006/jcph.1998.6001

[17] G. Sutmann and B. Steffen, “High Order Compact Solvers for the Three-Dimensional Poisson Equation,” Journal of Computation and Applied Mathematics, Vol. 187, No. 2, 2006, pp. 142-170. doi:10.1016/j.cam.2005.03.041

[18] J. Zhang, “Fast and High Accuracy Multigrid Solution of the Three Dimensional Poisson Equation,” Journal of Computation Physics, Vol. 143, No. 2, 1998, pp. 449- 461. doi:10.1006/jcph.1998.5982

[19] M. A. Malcolm and J. Palmer, “A Fast Method for Solv- ing a Class of Tri-Diagonal Linear Systems,” Communi- cations of the ACM, Vol. 17, No. 1, 1974, pp. 14-17.
doi:10.1145/360767.360777