OJAS  Vol.9 No.2 , April 2019
Maximum Entropy Ecological Niche Prediction of the Current Potential Geographical Distribution of Eimeria Species of Cattle, Sheep and Goats in Mexico
Abstract: Coccidiosis is a gastrointestinal disease caused by parasites of the genus Eimeria. To produce the ecological niche model for the geographic distribution of Eimeria species, the maximum entropy algorithm (MaxEnt) was used and 19 bioclimatic variables with a spatial resolution of 30 arc-seconds (approximately 1 km2) were downloaded from the World Climate Database. These were reduced to BIO2, BIO3, BIO4, BIO7 and BIO15 for each species after examining cross-correlations among them to account multicollinearity. A jackknife analysis was included to assess the contribution of five bioclimatic variables and the fit of the model was evaluated with the area under receiver operating characteristic curve (AUC). Under a current climate scenario, the jackknife evaluation of the MaxEnt model showed that BIO4 (temperature seasonality) made the greatest contribution to the distribution model for 22 Eimeria species; whereas BIO7 (temperature annual range) was the most important factor that contributes to the distribution model of 10 species. The habitat suitability model based on the maximum entropy theory was supported by AUC values higher than 0.9 and predicted that the suitable habitats for different species of Eimeria are present in southern, eastern and western areas of Mexico. Our study may support future studies exploring factors that constrain the distribution of Eimeria as well as strategies aimed at reducing the disease prevalence.
Cite this paper: Alcala-Canto, Y. , Alberti-Navarro, A. , Figueroa-Castillo, J. , Ibarra-Velarde, F. , Vera-Montenegro, Y. and Cervantes-Valencia, M. (2019) Maximum Entropy Ecological Niche Prediction of the Current Potential Geographical Distribution of Eimeria Species of Cattle, Sheep and Goats in Mexico. Open Journal of Animal Sciences, 9, 234-248. doi: 10.4236/ojas.2019.92020.

[1]   Chaiyos, J., Suwannatrai, K., Thinkhamrop, K., Pratumchart, K., Sereewong, C., Tesana, S., et al. (2018) MaxEnt Modeling of Soil-Transmitted Helminth Infection Distributions in Thailand. Parasitology Research, 117, 3507-3517.

[2]   Pickles, R.S., Thornton, D., Feldman, R., Marques, A. and Murray, D.L. (2013) Predicting Shifts in Parasite Distribution with Climate Change: A Multitrophic Level Approach. Global Change Biology, 19, 2645-2654.

[3]   Keeton, S.T.N. and Navarre, C.B. (2018) Coccidiosis in Large and Small Ruminants. Veterinary Clinics of North America: Food Animal Practice, 34, 201-208.

[4]   Carvalho, B.M., Rangel, E.F., Ready, P.D. and Vale, M.M. (2015) Ecological Niche Modelling Predicts Southward Expansion of Lutzomyia (Nyssomyia) Flaviscutellata (Diptera: Psychodidae: Phlebotominae), Vector of Leishmania (Leishmania) Amazonensis in South America, under Climate Change. PLoS ONE, 10, e0143282.

[5]   Giles, J.R., Peterson, A.T., Busch, J.D., Olafson, P.U., Scoles, G.A., Davey, R.B., et al. (2014) Invasive Potential of Cattle Fever Ticks in the Southern United States. Parasites and Vectors, 7, 189.

[6]   Pérez-Rodríguez, A., de la Hera, I., Fernández-González, S. and Pérez-Tris, J. (2014) Global Warming Will Reshuffle the Areas of High Prevalence and Richness of Three Genera of Avian Blood Parasites. Global Change Biology, 20, 2406-2016.

[7]   Valencia-López, N., Malone, J.B., Carmona, C.G. and Velásquez, L.E. (2012) Climate-Based Risk Models for Fasciola Hepatica in Colombia. Geospatial Health, 6, S67-S85.

[8]   Charlier, J., Bennema, S.C., Caron, Y., Counotte, M., Ducheyne, E., Hendrickx, G., et al. (2011) Towards Assessing Fine-Scale Indicators for the Spatial Transmission Risk of Fasciola Hepatica in Cattle. Geospatial Health, 5, 239-245.

[9]   York, E.M., Butler, C.J. and Lord, W.D. (2014) Global Decline in Suitable Habitat for Angiostrongylus (=Parastrongylus) cantonensis: The Role of Climate Change. PLoS ONE, 9, e103831.

[10]   Suwannatrai, A., Pratumchart, K., Suwannatrai, K., Thinkhamrop, K., Chaiyos, J., Kim, C.S., et al. (2017) Modeling Impacts of Climate Change on the Potential Distribution of the Carcinogenic Liver Fluke, Opisthorchis viverrini, in Thailand. Parasitology Research, 116, 243-250.

[11]   Rubel, F., Brugger, K., Monazahian, M., Habedank, B., Dautel, H., Leverenz, S., et al. (2014) The First German Map of Georeferenced Ixodid Tick Locations. Parasites and Vectors, 7, 477.

[12]   Walter, M., Brugger, K. and Rubel, F. (2016) The Ecological Niche of Dermacentor marginatus in Germany. Parasitology Research, 115, 2165-2174.

[13]   Alcala-Canto, Y., Figueroa-Castillo, J.A., Ibarra-Velarde, F., Vera-Montenegro, Y., Cervantes-Valencia, M.E., Salem, A.Z.M., et al. (2018) Development of the First Georeferenced Map of Rhipicephalus (Boophilus) spp. in Mexico from 1970 to Date and Prediction of Its Spatial Distribution. Geospatial Health, 13, 624.

[14]   García, E. (1981) Modificaciones al Sistema de Clasificación Climática de Koppen Para Adaptarlo a las Condiciones de la República Mexicana. México, D.F., México.

[15]   García E: Climas (Clasificación de Koppen, Modificado por García) (1998) Escala 1:1000000. Comisión Nacional Para el Conocimiento y uso de la Biodiversidad (CONABIO), Mexico.

[16]   Musella, V., Catelan, D., Rinaldi, L., Lagazio, C., Cringoli, G. and Biggeri, A. (2011) Covariate Selection in Multivariate Spatial Analysis of Ovine Parasitic Infection. Preventive Veterinary Medicine, 99, 69-77.

[17]   Tanner, E.P., Papes, M., Elmore, R.D., Fuhlendorf, S.D. and Davis, C.A. (2017) Incorporating Abundance Information and Guiding Variable Selection for Climate-Based Ensemble Forecasting of Species’ Distributional Shifts. PLoS ONE, 12, e0184316.

[18]   Hijmans, R., Cameron, S., Parra, J., Jones, P. and Jarvis, A. (2005) Very High Resolution Interpolated Climate Surfaces for Global Land Areas. International Journal of Climatology, 25, 1965-1978.

[19]   Phillips, S.J. and Dudík, M. (2006) Schapire RE: Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1).

[20]   Zhang, K., Yao, L., Meng, J. and Tao, J. (2018) Maxent Modeling for Predicting the Potential Geographical Distribution of Two Peony Species under Climate Change. Science of the Total Environment, 634, 1326-1334.

[21]   McQuillan, M.A. and Rice, A.M. (2015) Differential Effects of Climate and Species Interactions on Range Limits at a Hybrid Zone: Potential Direct and Indirect Impacts of Climate Change. Ecology and Evolution, 5, 5120-5137.

[22]   Qin, H., Gao, X., Wang, H. and Xiao, J. (2016) Relative Importance of Meteorological and Geographical Factors in the Distribution of Fasciola hepatica Infestation in Farmed Sheep in Qinghai Province, China. Parasite, 23, Article No. 59.

[23]   Fand, B.B., Kumar, M. and Kamble, A.L. (2014) Predicting the Potential Geographic Distribution of Cotton Mealybug Phenacoccus Solenopsis in India Based on MAXENT Ecological Niche Model. Journal of Environmental Biology, 35, 973-982.

[24]   Efron, B. (1982) The Jackknife, the Bootstrap, and Other Resampling Plans. Philadelphia. Society for Industrial and Applied Mathematics, Philadelphia, PA.

[25]   Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J., et al. (2009) Sample Selection Bias and Presence-Only Distribution Models: Implications for Background and Pseudo-Absence Data. Ecological Applications, 19, 181-197.

[26]   Phillips, S., Anderson, R. and Schapire, R. (2006) Maximum Entropy Modeling of Species Geographic Distribution. Ecological Modelling, 190, 231-259.

[27]   Graham, M.H. (2003) Confronting Multicollinearity in Ecological Multiple Regression. Ecology, 84, 2809-2815.

[28]   Wolter, K.M. (2007) The Jackknife Method. In: Wolter, K.M., Ed., Introduction to Variance Estimation, Springer, New York, 151-193.

[29]   INEGI (2017) Guía para la interpretación de cartografía climática. Edited by Geografía INdEy. INEGI, México.

[30]   Mai, K., Sharman, P.A., Walker, R.A., Katrib, M., De Souza, D., McConville, M.J., et al. (2009) Oocyst Wall Formation and Composition in Coccidian Parasites. Memórias do Instituto Oswaldo Cruz, 104, 281-289.

[31]   Belli, S.I., Smith, N.C. and Ferguson, D.J. (2006) The Coccidian Oocyst: A Tough Nut to Crack! Trends in Parasitology, 22, 416-423.

[32]   Das, M., Deka, D.K., Sarmah, P.C., Islam, S. and Sarma, S. (2015) Diversity of Eimeria Spp. in Dairy Cattle of Guwahati, Assam, India. Veterinary World, 8, 941-945.

[33]   Nahed-Toral, J., López-Tirado, Q., Mendoza-Martinez, G., Aluja-Schunemann, A. and Trigo-Tavera, F.J. (2003) Epidemiology of Parasitosis in the Tzotzil Sheep Production System. Small Ruminant Research, 49, 199-206.

[34]   Rodríguez-Vivas, R., Gris, L., Pérez de León, A., Silva, V., Torres-Acosta, J., Fragoso-Sánchez, H., et al. (2017) Potential Economic Impact Assessment for Cattle Parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8, 61-74.

[35]   Lassen, B., Viltrop, A. and Jarvis, T. (2009) Herd Factors Influencing Oocyst Production of Eimeria and Cryptosporidium in Estonian Dairy Cattle. Parasitology Research, 105, 1211-1222.

[36]   Sun, P., Wronski, T., Bariyanga, J.D. and Apio, A. (2018) Gastro-Intestinal Parasite Infections of Ankole Cattle in an Unhealthy Landscape: An Assessment of Ecological Predictors. Veterinary Parasitology, 252, 107-116.

[37]   Acheson, E.S., Plowright, A.A. and Kerr, J.T. (2015) Where Have All the Mosquito Nets Gone? Spatial Modelling Reveals Mosquito Net Distributions Across Tanzania Do Not Target Optimal Anopheles Mosquito Habitats. Malaria Journal, 14, 322.