Approximate Solution of the Singular-Perturbation Problem on Chebyshev-Gauss Grid

References

[1] M. K. Kadalbajoo and D. Kumar, “Fitted Mesh B-Spline Collocation Method for Singularly Perturbed Differential- Difference Equations with Small Delay,” Applied Mathe- matics and Computation, Vol. 204, No. 1, 2008, pp. 90- 98. doi:10.1016/j.amc.2008.05.140

[2] M. K. Kadalbajoo and K. K. Sharma, “A Numerical Me- thod Based on Finite Difference for Boundary Value Pro- blems for Singularly Perturbed Delay Differential Equa- tions,” Applied Mathematics and Computation, Vol. 197, No. 2, 2008, pp. 692-707. doi:10.1016/j.amc.2007.08.089

[3] M. K. Kadalbajoo and V. P. Ramesh, “Numerical Meth- ods on Shishkin Mesh for Singularly Perturbed Delay Differential Equations with a Grid Adaptation Strategy,” Applied Mathematics and Computation, Vol. 188, No. 2, 2007, pp. 1816-1831. doi:10.1016/j.amc.2006.11.046

[4] M. K. Kadalbajoo and V. P. Ramesh, “Hybrid Method for Numerical Solution of Singularly Perturbed Delay Dif- ferential Equationsy,” Applied Mathematics and Compu- tation, Vol. 187, No. 2, 2007, pp. 797-814.
doi:10.1016/j.amc.2006.08.159

[5] M. K. Kadalbajoo and K. K. Sharma, “Numerical Analy- sis of Singularly Perturbed Delay Differential Equations with Layer Behavior,” Applied Mathematics and Com- putation, Vol. 157, No. 1, 2004, pp. 11-28.
doi:10.1016/j.amc.2003.06.012

[6] K. C. Patidar and K. K. Sharma, “ε-Uniformly Conver- gent Non-Standard Finite Difference Methods for Singu- larly Perturbed Differential Difference Equations with Small Delay,” Applied Mathematics and Computation, Vol. 175, No. 1, 2006, pp. 864-890.
doi:10.1016/j.amc.2005.08.006

[7] M. H. Adhikari, E. A. Coutsias and J. K. Mclver, “Periodic Solutions of a Singularly Perturbed Delay Differential Equation,” Physica D, Vol. 237, No. 24, 2008, pp. 3307-3321. doi:10.1016/j.physd.2008.07.019

[8] I. G. Amirsliyeva, F. Erdogan and G. M. Amiraliyev, “A Uniform Numerical Method for Dealing with a Singularly Perturbed Delay Initial Value Problem,” Applied Mathe- matics Letters, Vol. 23, No. 10, 2010, pp. 1221-1225.
doi:10.1016/j.aml.2010.06.002

[9] S. N. Chow and J. M. Paret, “Singularly Perturbed Delay- Differential Equations, Cuopled Nonlinear Oscillators,” North-Holland Publishing Company, Amsterdam, 1983.

[10] R. E. O’Malley Jr., “Introduction to Singular Perturbation,” Academic Press, New York, 1979.

[11] M. Glsu, Y. ?ztürk and M. Sezer, “A Newcollocation Method for Solutionof the Mixed Linear Integro-Differ- ential-Difference Equations,” Applied Mathematics and Computation, Vol. 216, No. 7, 2010, pp. 2183-2198.
doi:10.1016/j.amc.2010.03.054

[12] M. Sezer and M. Gulsu, “Polynomial Solution of the Most General Linear Fredholm Integro-Differential-Dif- ference Equation by Means of Taylor Matrix Method,” International Journal of Complex Variables, Vol. 50, No. 5, 2005, pp. 367-382.

[13] T. J. Rivlin, “Introduction to the Approximation of Func- tions,” Courier Dover Publications, London, 1969.

[14]
[2] P. J. Davis, “Interpolation and Approximation,” Dover Pub- lications, New York, 1963.

[15] K. Atkinson and W. Han, “Theoretical Numerical Analysis,” 3rd Edition, Springer, 2009.

[16] J. P. Body, “Chebyshev and Fourier Spectral Methods,” University of Michigan, New York, 2000.

[17] J. C. Mason and D. C. Handscomb, “Chebyshev Polyno- mials,” Chapman and Hall/CRC, New York, 2003.