MSA  Vol.10 No.4 , April 2019
Carbon Fibre Reinforced Concrete: Dependency of Bond Strength on Tg of Yarn Impregnating Polymer
Abstract: In this paper, a method for the evaluation of the influence of different polymer suspensions and environmental conditions on adhesion between an impregnated carbon fibre heavy tow and concrete for reinforcement will be proposed. For this purpose, the impregnation material itself was investigated as a polymer film before and after incubation in water and aqueous suspensions, such as NaOH and a cementitious solution, in terms of its thermal properties, swelling behaviour and morphology. Thin polymer films were manufactured and subsequently investigated with quantification of the swelling for 28 d by thermal and scanning electron microscope analysis. The effect of pull-out shear stress was evaluated to investigate parameters such as high temperature and moisture on adhesion to concrete. Contact angle measurements were used to determine the surface energy of the polymer films. All incubated polymer films yielded a change in both surface morphology and specific residues on the polymer film surface, e.g. in the form of calcium carbonate, but no change in glass-transition temperature. A high correlation between glass-transition temperature and measured shear stress was shown during single yarn pull-out tests. Furthermore, the water treatment of pull-out samples strengthened the influence for the glass-transition temperature during the adhesion test. No influence of the surface energy of the used polymer impregnation for carbon fibres on the pull-out test was detected.
Cite this paper: Kruppke, I. , Butler, M. , Schneider, K. , Hund, R. , Mechtcherine, V. and Cherif, C. (2019) Carbon Fibre Reinforced Concrete: Dependency of Bond Strength on Tg of Yarn Impregnating Polymer. Materials Sciences and Applications, 10, 328-348. doi: 10.4236/msa.2019.104025.

[1]   Mechtcherine, V. (2013) Novel Cement-Based Composites for the Strengthening and Repair of Concrete Structures. Construction and Building Materials, 41, 365-373.

[2]   Brameshuber, W. (2006) Report rep036: Textile Reinforced Concrete State-of-the-Art Report of RILEM TC 201-TRC. Springer, Berlin.

[3]   Busel, J.P. and Shield, C.K. (2006) Guide for the Design and Construction of Structural Reinforced with FRP Bars. ACI Committee 440.

[4]   Dvorkin, D. and Peled, A. (2016) Effect of Reinforcement with Carbon Fabrics Impregnated with Nanoparticles on the Tensile Behavior of Cement-Based Composites. Cement and Concrete Composites, 85, 28-38.

[5]   Lee, C., Bonacci, J.F., Thomas, M.D.A., Maalej, M., Khajehpour, S., Hearn, N., Pantazopoulou, S. and Sheikh, S. (2000) Accelerated Corrosion and Repair of Reinforced Concrete Columns Using Carbon Fibre Reinforced Polymer Sheets. Canadian Journal of Civil Engineering, 27, 941-948.

[6]   Hausding, J., Engler, T., Kleicke, R. and Cherif, C. (2008) High Productivity and Near-Net Shape Manufacture of Textile Reinforcements for Concrete.

[7]   Dai, Z., Shi, F., Zhang, B., Li, M. and Zhang, Z. (2011) Effect of Sizing on Carbon Fiber Surface Properties and Fibers/Epoxy Interfacial Adhesion. Applied Surface Science, 257, 6980-6985.

[8]   Tang, L.-G. and Kardos, J.L. (1997) A Review of Methods for Improving the Interferical Adhesion between Carbon Fiber and Polymer Matrix. Polymer Composites, 18, 100-113.

[9]   Kappler, I., Matthai, P. and Cherif, C. (2014) Adhesion Problematic for Novel Non-Crimp Fabric and Surface Modification of Carbon-Fibres Using Oxy-Fluorination. International Journal of Chemical, Nuclear, Materials and Metallurgical Engineering, 8, 1390-1395.

[10]   Scheffler, C., Gao, S.L., Plonka, R., Mader, E., Hempel, S., Butler, M. and Mechtcherine, V. (2009) Interphase Modification of Alkali-Resistant Glass Fibres and Carbon Fibres for Textile Reinforced Concrete I: Fibre Properties and Durability. Composite Science and Technology, 69, 531-538.

[11]   Scheffler, C., Gao, S.L., Plonka, R., Mader, E., Hempel, S., Butler, M. and Mechtcherine, V. (2009) Interphase Modification of Alkali-Resistant Glass Fibres and Carbon Fibres for Textile Reinforced Concrete II: Water Adsoption and Composite Interphases. Composite Science and Technology, 69, 905-912.

[12]   Apicella, A., Nicolais, L., Astarita, G. and Drioli, E. (1979) Effect of Thermal History on Water Sorption, Elastic Properties and Glass Transition Temperature of Epoxy Resins. Polymer, 20, 1143-1148.

[13]   Boogh, L. and Manson, J.-A.E. (1999) Dendritic Hy-perbranched Polymers as Tougheners for Epoxy Resins. Polymer, 40, 2249-2261.

[14]   Katz, A., Berman, N. and Bank, L.C. (1999) Effect of High Temperature on Bond Strength of FRP Rebars. Journal of Composites for Construction, 3, 73-81.

[15]   Alsayed, S., Al-Salloum, Y., Almusallam, T., El-Gamal, S. and Aqel, M. (2012) Performance of Glass Fiber Reinforced Polymer Bars under Elevated Temperatures. Composites: Part B, 43, 2265-2271.

[16]   Kruppke, I., Hund, R.-D. and Cherif, C. (2015) Adhesion Problematics and Curing Kinetics in a Thermosetting Matrix for Stitch-Free Non-Crimp Fabric. Textile Research Journal, 1-12.

[17]   Shayed, M.A., Hund, H., Hund, R.-D. and Cherif, C. (2016) Thermal and Oxidation Protection of Carbon Fiber by Continuous Liquid Phase Pre-Ceramic Coatings for High Temperature Application. Fibers and Polymers, 17, 229-240.

[18]   Peled, C.R., Mechtcherine, A., Hempel, V. and Schroefl Nadiv, S. (2017) Micro- and Nanoparticle Mineral Coating for Enhanced Properties of Carbon Multifilament Yarn Cement-Based Composites. Composites Part B, 111, 179-189.

[19]   Schneider, K., Lieboldt, M., Liebscher, M., Frohlich, M., Hempel, S., Butler, M., Schrofl, C. and Mechtcherine, V. (2017) Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance. Materials, 10, 1-17.

[20]   Textile Glass-Yarns Determination of Breakting Force and Breakting Elongation, ISO 3341:2000-05, DIN Deutsches Institut für Normung e. V., 2000.

[21]   E.O. for T.A. Europaische Organisation für Technische Zulassungen (2001) Bekanntmachung der Leitlinie für Aussenseitige Warmedamm-Verbundsysteme, Eidgenassisches Finanzdepartement EFD, Bundesamt für Bauten und Logistik BBL.

[22]   Butler, M., Mechtcherine, V. and Hempel, S. (2009) Experimental Investigations on the Durability of Fibre-Matrix Interfaces in Textile-Reinforced Concrete. Cement & Concrete Composites, 31, 221-231.

[23]   Lorenz, E., Schütze, E., Schladitz, F. and Curbach, M. (2013) Textilbeton Grundlegende Untersuchungen im überblick. Beton-und Stahlbetonbau, 108, 711-722.

[24]   L.C. GmbH (2014) Lefasol VL 90/1.

[25]   L.C. GmbH (2013) Lefasol VP 4-5 LF.

[26]   L.C. GmbH (2015) Lefasol BT 83003-3.

[27]   D. GmbH (2017) Dyckerhoff NANODUR® Compound 5941, zur einfachen Herstellung von UHPC.

[28]   Kaelble, D.H. and Uy, K.C. (1970) A Reinterpretation of Organic Liquid-Polytetrafluoroethylene Surface Interactions. The Journal of Adhesion, 2, 50-60.

[29]   Owens, D.K. and Wendt, R.C. (1969) Estimation of the Surface Free Energy of Polymers. Journal of Applied Polymer Science, 13, 1741-1747.

[30]   Rabel, W. (1977) Liquid Interfaces in Theory and Applied Technology. Physikalische Blatter, 33, 151-156.

[31]   S.Z. KG (2012) Technisches Merkbatt, CEM I 42,5 R, Portlandzement. Schwenk Zement KG.

[32]   E.M. Inc. (2013) Safty Data Sheet, Elkem Microsilika Textsuperscript®. Elkem Materials Inc.

[33]   Butler, M. (2009) Dauerhaftigkeit von Verbundwerkstoffen aus Zementgebundenen Martices und AR-Glas-Multifilamentgarnen. Schriftenreihe des Institutes für Baustoffe Heft 2009/1.

[34]   Candau, S., Bastide, J. and Delsanti, M. (2005) Structural, Elastic, and Dynamic Properties of Swollen Polymer Networks. Polymer Networks. Advances in Polymer Science, 48, 27-71.

[35]   Mostafa, A., Aboudel-Kasem, A., Bayoumi, M.R. and El-Sebaie, M.G. (2009) Effect of Carbon Black Loading on the Swelling and Compression Set Behavior of SBR and NBR Rubber Compounds. Materials and Design, 30, 1561-1568.

[36]   Mootz, D. and Seidel, R. (1990) Zum System Natriumhy-droxid—Wasser Die Kristallstruktur der metastabilen Phase Beta-NaOH·4H2O. Journal of Inorganic and General Chemistry, 582, 162-168.

[37]   Stehr, H. (1967) Neubestimmung der Kristallstrukturen des dimorphen Natriumhydroxids, NaOH, bei verschie-denen Temperaturen mit Rontgenstrahl und Neutronenbeugung. Zeitschrift für Kristallographie Crystalline Materials, 125, 332-359.

[38]   Buczynski, C. and Chafetz, H.S. (1990) Habit of Bacterially Induced Precipitates of Calcium Carbon and the Influence of Medium Viscosity on Mineralogy. Journal of Sedimentary Petrology, 61, 226-233.

[39]   Meldrum, F.A. and Hyde, S.T. (2001) Morphological Influence of Magnesium and Organic Additives on the Precipitation of Calcite. Journal of Crystal Growth, 231, 544-558.

[40]   Kumar, S., Kumar, R., et al. (2008) Mechanical Activation of Granulated Blast Furnace Slag and Its Effect on the Properties and Structure of Portland Slag Cement. Cement & Concrete Composites, 30, 679-685.

[41]   Kelley, F.N. and Bueche, F. (1961) Viscosity and Glass Transition Relations for Polymer-Diluent Systems. Journal of Polymer Science, 50, 549-556.

[42]   Mackague, E.L., Reynolds, J.D. and Halkias, J.E. (1978) Swelling and Glass Transition Relations for Epoxy Matrix Material in Humid Environments. Journal of Applied Polymer Science, 22, 1643-1654.