Back
 JWARP  Vol.11 No.3 , March 2019
Comparative Study on the Effects of Surface Area, Conduction Band and Valence Band Positions on the Photocatalytic Activity of ZnO-MxOy Heterostructures
Abstract: ZnO-MxOy heterostructures (M=Co, Mn, Ni, or In) are fabricated via hydrothermal synthesis method. X-ray diffraction and Fourier-transform infrared spectroscopy analyses endorse the successive formation of the various heterostructures. Field Emission Scanning electron microscope and Brunauer-Emmett-Teller (BET) surface area studies confirm the porous nature of the heterostructures obtained. The band gaps of various heterostructures are calculated that, 3.1, 2.71, 2.64, and 2.19 eV for ZnO-NiO, ZnO-In2O3, ZnO-Co3O4, and ZnO-MnO2, respectively. The photocatalytic activities of the fabricated heterostructures are investigated through the degradation of phenol under direct sunlight irradiation. The results show that the photocatalytic activity is affected by the conduction band (CB) and valence band (VB) positions rather than surface area of ZnO-MxOy heterostructure nanocomposites.
Cite this paper: Nayan, M. , Jagadish, K. , Abhilash, M. , Namratha, K. , Srikantaswamy, S. (2019) Comparative Study on the Effects of Surface Area, Conduction Band and Valence Band Positions on the Photocatalytic Activity of ZnO-MxOy Heterostructures. Journal of Water Resource and Protection, 11, 357-370. doi: 10.4236/jwarp.2019.113021.
References

[1]   Wang, H.L., Zhang, L.S., Chen, Z.G., Hu, J.Q., Li, S.J., Wang, Z.H., et al. (2014) Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances. Chemical Society Reviews, 43, 5234-5244.

[2]   Pirhashemi, M., AHabibi-Yangjeh, A. and Rahim Pouran, S. (2018) Review on the Criteria Anticipated for the Fabrication of Highly Efficient ZnO-Based Visible-Light-Driven Photocatalysts. Journal of Industrial and Engineering Chemistry, 62, 1-25.

[3]   Gnanaprakasam, A., Sivakumar, V.M., Sivayogavalli, P.L. and Thirumarimurugan, M. (2015) Characterization of TiO2 and ZnO Nanoparticles and Their Applications in Photocatalytic Degradation of Azodyes. Ecotoxicology and Environmental Safety, 121, 121-125.
https://doi.org/10.1016/j.ecoenv.2015.04.043

[4]   Wang, C, Xu, B.Q., Wang, X.M. and Zhao, J.C. (2005) Preparation and Photocatalytic Activity of ZnO/TiO2 /SnO2 Mixture. Journal of Solid State Chemistry, 178, 3500-3506.
https://doi.org/10.1016/j.jssc.2005.09.005

[5]   Ye, Z., Li, J., Zhou, M., Wang, H., Ma, Y. and Huo, P. (2016) The Histone H3.3K36M Mutation Reprograms the Epigenome of Chondroblastomas. Chemical Engineering Journal, 352, 1344-1348.

[6]   Wang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X., Zhang, X. and Dai, Y. (2012) Facile Incorporation of Aggregation-Induced Emission Materials into Mesoporous Silica Nanoparticles for Intracellular Imaging and Cancer Therapy. ACS Applied Materials &Interfaces, 5, 1943-1947.

[7]   Ullatil, S.G., Periyat, P., Naufal, B. and Lazar, M.A. (2016) Self-Doped ZnOMicrorods—High Temperature Stable Oxygen Deficient Platforms for Solar Photocatalysis. Industrial & Engineering Chemistry Research, 55, 6413-6421.
https://doi.org/10.1021/acs.iecr.6b01030

[8]   Pasang, T., Namratha, K., Parvin, T., Ranganathaiah, C. and Byrappa, K. (2015) Tuning of Band Gap in TiO2 and ZnO Nanoparticles by Selective Doping for Photocatalytic Applications. Materials Research Innovations, 19, 73-80.
https://doi.org/10.1179/1433075X14Y.0000000217

[9]   Namratha, K., Byrappa, S. and Byrappa, K. (2013) Hydrothermal Synthesis, in Situ Surface Modification and Antioxidant Activity of Couple Doped Advanced ZnO Nanoparticles. Journal of Nanopharmaceutics and Drug Delivery, 1, 258-265.
https://doi.org/10.1166/jnd.2013.1026

[10]   Chao, X., Cao, L.X., Su, G., Liu, W., Liu, H., Yu, Y.Q. and Qu, X.F. (2010) Preparationof ZnO/Cu2O, Compound Photocatalyst and Application in Treating Organic Dyes. Journal of Hazardous Materials, 76, 807-813.

[11]   Hezam, A., Namratha, K., Drmosh, Q.A., Yamani, Z.H. and Byrappa, K. (2017) Synthesis of Heterostructured Bi2O3-CeO2-ZnO Photocatalyst with Enhanced Sunlight Photocatalytic Activity. Ceramics International, 43, 5292-5230.
https://doi.org/10.1016/j.ceramint.2017.01.059

[12]   Haleem, Y.A., He, Q., Liu, D., Wang, C., Xu, W., Gan, W., et al. (2017) Facile Synthesis of Mesoporous Detonation Nanodiamond-Modified Layers of Graphitic Carbon Nitride as Photocatalysts for the Hydrogen Evolution Reaction. RSC Advances, 7, 15390-15396.

[13]   Mondal, K. and Sharma, A. (2016) Recent Advances in Synthesis and Application of Photocatalytic Metal-Metal Oxide Core-Shell Nanoparticles for Environmental Remediation and Their Recycling Process. RSC Advances, 6, 83589-83612.
https://doi.org/10.1039/C6RA18102C

[14]   Li, J.Z., Zhong, J.B., He, X.Y., Huang, S.T., Zeng, J., He, J.J., et al. (2013) Enhanced Photocatalytic Activity of Fe2O3 Decorated Bi2O3. Applied Surface Science, 284, 527-532.
https://doi.org/10.1016/j.apsusc.2013.07.128

[15]   Namratha, K. and Byrappa, K. (2013) Hydrothermal Processing and in Situ Surface Modification of Metal Oxide Nanomaterials. The Journal of Supercritical Fluids, 79, 251-260.
https://doi.org/10.1016/j.supflu.2013.01.007

[16]   Namratha, K and Byrappa, K. (2012) Novel Solution Routes of Synthesis of Metal Oxide and Hybrid Metal Oxide Nanocrystals. Progress in Crystal Growth and Characterization of Materials, 58, 14-42.
https://doi.org/10.1016/j.pcrysgrow.2011.10.005

[17]   Keerthana, D.S., Namratha, K., Byrappa, K. and Yathirajan, H.S. (2015) Facile One-Step Fabrication of Magnetite Particles under Mild Hydrothermal Conditions. Journal of Magnetism and Magnetic Materials, 378, 551-557.
https://doi.org/10.1016/j.jmmm.2014.10.176

[18]   Shubha, P., Namratha, K., Jit Chatterjee, M.S., Mustak, B. and Byrappa, K. (2017) Use of Honey in Stabilization of ZnO Nanoparticles Synthesized via Hydrothermal Route and Assessment of Their Antibacterial Activity and Cytotoxicity. Global Journal of Nanomedicine, 2, Article ID: 555585.

[19]   Hezam, A., Namratha, K., Drmosh, Q., Chandrashekar, B.N., Sadasivuni, K.K., Yamaniet, Z.H., et al. (2017) Heterogeneous Growth Mechanism of ZnO Nanostructures and the Effects of Their Morphology on Optical and Photocatalytic Properties. CrystEngComm, 19, 3299-3312.
https://doi.org/10.1039/C7CE00609H

[20]   Liang, Z., Jing, X., Liu, J., Wang, J. and Sun, Y. (2015) Facile Synthesis of Mesoporous ZnO/Co3O4 Microspheres with Enhanced Gas-Sensing for Ethanol. Sensors and Actuators B: Chemical, 221, 1492-1498.
https://doi.org/10.1016/j.snb.2015.07.113

[21]   Huang, M., Li, F., Li, X., Luo, D., Qiu, X., Zhang, Y. and Li, G. (2015) MnO2-Based Nanostructures for High-Performance Supercapacitors. Electrochimica Acta, 152, 172-177.
https://doi.org/10.1016/j.electacta.2014.11.127

[22]   Radhamani, A.V., Shareef, K.M. and Ramachandra, M.S. (2016) ZnO@MnO2 Core-Shell Nanofiber Cathodes for High Performance Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 8, 30531-30542.
https://doi.org/10.1021/acsami.6b08082

[23]   Wang, Z., Huang, B., Dai, Y., Qin, X., Zhang, X., Wang, P., Liu, H. and Yu, J. (2009) HOx Radical Regeneration in the Oxidation of Isoprene. Physical Chemistry Chemical Physics, 11, 5935-5939.
https://doi.org/10.1039/b908511d

[24]   Tauc, J., Grigorovici, R. and Vancu, A. (1966) Optical Properties and Electronic Structure of Amorphous Germanium. Physica Status Solidi, 15, 627-637.
https://doi.org/10.1002/pssb.19660150224

[25]   Srivastava, M., Das, A.K., Khanra, P., Uddin, M.E., Kim, N.H. and Lee, J.H. (2013) Characterizations of in Situ Grown ceria Nanoparticles on Reduced Graphene Oxide as a Catalyst for the Electrooxidation of Hydrazine. Journal of Materials Chemistry A, 7, 5069-5089.
https://doi.org/10.1039/c3ta11311f

[26]   Sing, K.S.W., Everett, D.H., Haul, R., Moscou, L., Pierotti, R.S., Rouquerol, J., et al. (1985) Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry, 57, 603-619.
https://doi.org/10.1351/pac198557040603

[27]   Dong, F., Zhao, Z., Xiong, T., Ni, Z., Zhang, W., Sun, Y., et al. (2013) Metal-Free Graphitic Carbon Nitride Photocatalyst Goes into Two-Dimensional Time. ACS Applied Materials & Interfaces, 5, 11392-11401.
https://doi.org/10.1021/am403653a

[28]   Kumar, K., Amanchi, S.R., Sreedhar, B., Ghosal, P. and Subrahmanyam, C. (2017) Phenol and Cr(VI) Degradation with Mn Ion Doped ZnO under Visible Light Photocatalysis. RSC Advances, 7, 43030-43039.
https://doi.org/10.1039/C7RA08172C

[29]   Muñoz-Batista, M.J., Gómez-Cerezo, M.N., Kubacka, A., Tudela, D. and Fernández-García, M. (2014) Role of Interface Contact in CeO2-TiO2 Photocatalytic Composite Materials. ACS Catalysis, 4, 63-72.
https://doi.org/10.1021/cs400878b

[30]   Ke, J., Liu, J., Sun, H., Zhang, H., Duan, X., Liang, P., et al. (2017) Facile Assembly of Bi2O3/Bi2S3/MoS2 N-Pheterojunction with Layered N-Bi2O3 and P-MoS2 for Enhanced Photocatalytic Water Oxidation and Pollutant Degradation. Applied Catalysis B: Environmental, 200, 47-55.
https://doi.org/10.1016/j.apcatb.2016.06.071

[31]   Hezam, A., Namratha, K., Lakshmeesha, T.R. and Byrappa, K. (2018) Direct Z-Scheme Cs2O-Bi2O3-ZnO Heterostructures as Efficient Sunlight-Driven Photocatalysts. ACS Omega, 3, 12260-12269.
https://doi.org/10.1021/acsomega.8b01449

[32]   Marschall, R. (2014) Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Advanced Functional Materials, 24, 2421-2440.
https://doi.org/10.1002/adfm.201303214

 
 
Top