JEAS  Vol.1 No.4 , December 2011
Yerba Mate Extract Encapsulation with Alginate and Chitosan Systems: Interactions between Active Compound Encapsulation Polymers
ABSTRACT
Yerba mate (Ilex paraguariensis) contains a high amount of polyphenols associated with antiradical activity and possible benefits for preventing degenerative diseases. Natural extracts from this South American herb were encapsulated in calcium alginate and calcium alginate-chitosan beads to be incorporated as an additive in food products. The interactions between the active compound and the polymers were evaluated by Scanning Electron Microscopy (SEM), thermal analysis (Thermo Gravimetric Assays, TGA, and Differential Scanning Calorimetry, DSC) and Fourier Transform Infrared Spectrometry (FT-IR) studies. Also, the effect of these interactions on extract release in a gastrointestinal model system was evaluated. Results showed the interactions between the calcium alginate matrix and the chitosan external layer. Also, interactions between the natural extract and each polymer were observed. In both encapsulation systems the highest polyphenol content was released in simulated gastric fluid. However, capsules coated with chitosan allowed releasing a higher amount of polyphenols into the simulated intestinal fluid. This fact was attributed to both the protection of the chitosan barrier and the strong interaction between yerba mate extract and chitosan.

Cite this paper
nullP. Anbinder, L. Deladino, A. Navarro, J. Amalvy and M. Martino, "Yerba Mate Extract Encapsulation with Alginate and Chitosan Systems: Interactions between Active Compound Encapsulation Polymers," Journal of Encapsulation and Adsorption Sciences, Vol. 1 No. 4, 2011, pp. 80-87. doi: 10.4236/jeas.2011.14011.
References
[1]   R. Filip, P. López, G. Giberti, J. Coussio and G. Ferraro, “Phenolic Compounds in Seven South American Ilex Species,” Fitoterapia, Vol. 72, No. 2, 2001, pp. 774-778. doi:10.1016/S0367-326X(01)00331-8

[2]   P. Dugo, F. Cacciola, P. Donato, R. Assis Jacques, E. Bastos Caramao and L. Mondello, “High Efficiency Liquid Chromatography Techniques Coupled to Mass Spectrometry for the Characterization of Mate Extracts,” Journal of Chromatography A, Vol. 1216, No. 43, 2009, pp. 7213-7221. doi:10.1016/j.chroma.2009.08.030

[3]   S. Chandra and E. Gonzalez de Mejía, “Polyphenolic Compounds, Antioxidant Capacity, and Quinone Reductase Activity of an Aqueous Extract of Ardisia compressa in Comparison to Mate (Ilex paraguariensis) and Green (Camellia sinensis) Teas,” Journal of Food Agriculture, Vol. 52, No. 11, 2004, pp. 3583-3589. doi:10.1021/jf0352632

[4]   N. Bracesco, M. Dell, A. Rocha, S. Behtash, T. Menini, A. Gugliucci and E. Nune, “Antioxidant Activity of Botanical Extract Preparation of Ilex Paraguariensis: Prevention of DNA Double-Strand Breaks in Sacharomyces cerevisiae and Human Low Density Lipoprotein Oxidation,” The Journal of Alternative and Complementary Medicine, Vol. 9, No. 3, 2003, pp. 379-387. doi:10.1089/107555303765551606

[5]   A. Gugliucci and A. J. Stahl, “Low Density Lipoprotein Oxidation is Inhibited by Extracts of Ilex Paraguariensis,” Biochemical and Biophysical Research Communications, Vol. 224, 1995, pp. 338-344. doi:10.1006/bbrc.1996.1030

[6]   N. Lunceford and A. Gugliucci, “Ilex Paraguariensis Extracts Inhibit AGE Formation More Efficiently Than Green Tea,” Fitoterapia, Vol. 76, No. 5, 2005, pp. 419-427. doi:10.1016/j.fitote.2005.03.021

[7]   T. Andersen and J. Fogh, “Weight Loss and Delayed Gastric Emptying Following a South American Herbal Preparation in Overweight Patients,” Journal of Human Nutrition and Dietetics, Vol. 14, 2001, pp. 243-250. doi:10.1046/j.1365-277X.2001.00290.x

[8]   C. P. Champagne and P. Fustier, “Microencapsulation for the Improved Delivery of Bioactive Compounds into Foods,” Current Opinion Biotechnology, Vol. 18, 2007, pp. 184-190. doi:10.1016/j.copbio.2007.03.001

[9]   F. Shahidi and X. Q. Han, “Encapsulation of Food Ingredients,” Critical Reviews in Food Science and Nutrition, Vol. 33, No. 6, 1993, pp. 501-547. doi:10.1080/10408399309527645

[10]   G. P. Scipioni, D. J. Ferreyra, M. G. Acuna and M. E. Schmalko, “Rebaudioside A Release from Matrices Used in a Yerba Mate Infusion,” Journal of Food Engineering, Vol. 100, 2010, pp. 627-633. doi:10.1016/j.jfoodeng.2010.05.011

[11]   L. Deladino, P. S. Anbinder, A. S Navarro and M. N. Martino, “Encapsulation of Natural Antioxidants Extracted from Ilex Paraguariensis,” Carbohydrate Polymers, Vol. 71, No. 3, 2008, pp. 126-134. doi:10.1016/j.carbpol.2007.05.030

[12]   L. Becherán-Marón, C. Peniche and W. Arguelles-Monal, “Chitosan and Alginate Polyelectrolyte Complex: Influence of Alginate Composition and Chitosan Molecular Weight,” International Journal of Biological Macromolecules, Vol. 34, No. 1-2, 2004, 127-133.

[13]   K. Schlesier, M. Harwat, V. Bohm and R. Bitsch, “Assessment of Antioxidant Activity by Using Different in vitro Methods,” Free Radical Research, Vol. 36, No. 2, 2002, pp. 177-187. doi:10.1080/10715760290006411

[14]   C. Sartori, D. S. Finch, B. Ralph and K. Gilding, “Determination of the Cation Content of Alginate Thin Films by FT-IR Spectroscopy,” Polymers, Vol. 38, No. 1, 1997, pp. 43-51. doi:10.1016/S0032-3861(96)00458-2

[15]   H. Y. Zhou, X. G. Chen, M. Kong, C. S. Liu, D. S. Cha and J. F. Kennedy, “Effect of Molecular Weight and Degree of Chitosan Deacetylation on the Preparation and Characteristics of Chitosan Thermosensitive Hydrogel as a Delivery System,” Carbohydrate Polymers, Vol. 73, 2008, pp. 265-273. doi:10.1016/j.carbpol.2007.11.026

[16]   B. Smitha, S. Sridhar and A. A. Khan, “Chitosan-Sodium Alginate Polyion Complexes as Fuell Cell Membranes,” European Polymer Journal, Vol. 41, 2005, pp. 1859-1866. doi:10.1016/j.eurpolymj.2005.02.018

[17]   S. L. Kosaraju, L. D’ath, and A. Lawrence, “Preparation and Characterisation of Chitosan Microspheres for Antioxidant Delivery,” Carbohydrate Polymers, Vol. 64, No. 4, 2006, pp. 163-167. doi:10.1016/j.carbpol.2005.11.027

[18]   Z. Xiang and Z. Ning, “Scavenging and Antioxidant Properties of Compound Derived from Chlorogenic Acid in South-China Honeysuckle,” LWT-Food Science and Technology, Vol. 41, 2008, pp. 1189-1203.

[19]   L. Zhang and S. L. Kosaraju, “Biopolymeric Delivery System for Controlled Release of Polyphenolic Antioxidants,” European Polymer Journal, Vol. 43, No. 7, 2007, pp. 2956-2966. doi:10.1016/j.eurpolymj.2007.04.033

[20]   T. W. Wong, L. W. Chan, S. B. Kho and P. W. Sia Heng, “Design of Controlled-Release Solid Dosage Forms of Alginate and Chitosan Using Microwave,” Journal of Controlled Release, Vol. 84, 2002, pp. 99-114. doi:10.1016/S0168-3659(02)00237-7

[21]   B. V. Kumar Naidu, M. Sairam, K. V. S. N. Raju and T. M. Aminabhavi, “Thermal, Viscoelastic, Solution and Membrane Properties of Sodium Alginate/Hydroxyethylcellulose Blends,” Carbohydrate Polymers, Vol. 61, No. 1, 2005, pp. 52-60. doi:10.1016/j.carbpol.2005.02.007

[22]   K. Miura, N. Kimura, H. Suzuki, Y. Miyashita and Y. Nishio, “Thermal and Viscoelastic Properties of Alginate/Poly(vinyl alcohol) Blends Cross-Linked with Calcium Tetraborate,” Carbohydrate Polymers, Vol. 39, No. 2, 1999, pp. 139-144. doi:10.1016/S0144-8617(98)00162-3

[23]   W. I. Abdel-Fattah, T. Jiang, G. El-Tabie El-Bassyouni and C. T. Laurencin, “Synthesis, Characterization of Chitosans and Fabrication of Sintered Chitosan Microsphere Matrices for Bone Tissue Engineering,” Acta Biomaterialia, Vol. 3, 2007, pp. 503-514. doi:10.1016/j.actbio.2006.12.004

[24]   M. Mucha and A. Paulak, “Thermal Analysis of Chitosan and Its Blends,” Thermochimica Acta, Vol. 427, No. 1-2, 2005, pp. 69-76. doi:10.1016/j.tca.2004.08.014

[25]   K. Sakurai, T. Maegawa and T. Takahashi, “Glass Transition Temperature of Chitosan and Miscibility of Chitosan/Poly(N-vinyl pyrrolidone) Blends,” Polymer, Vol. 41, No. 19, 2000, pp. 7051-7056. doi:10.1016/S0032-3861(00)00067-7

[26]   M. J. Zohuriaan and F. Shokrolahi, “Thermal Studies on Natural and Modified Gums,” Polymer Testing, Vol. 23, No. 5, 2004, pp. 575-579. doi:10.1016/j.polymertesting.2003.11.001

 
 
Top