Revisiting the Computation of Cohomology Classes of the Witt Algebra Using Conformal Field Theory and Aspects of Conformal Algebra

Show more

References

[1] Hartwig, J.T. (2003) Highest Weight Representations of the Virasoro Algebra. Internet Based Published Notes, 93-131.

[2] Gordon, I. (2008) Infinite-Dimensional Lie Algebras. Internet Based Publish Notes, 1-55.

[3] Blumenhagen, R. and Plauschinn, E. (2009) Introduction to Conformal Field Theory. Vol. 779 of Lecture Notes in Physics, Springer, Dordrecht.

https://doi.org/10.1007/978-3-642-00450-6

[4] Nutku, S.C., Yavuz and Turgut, T. (2000) Conformal Field Theory. Vol. 102 of Frontiers in Physics, Perseus Publishing.

[5] Kac, V. (1998) Vertex Algebras for Beginners. Vol. 10 of University Lecture Series, 2nd Edition, American Mathematical Society, Providence.

https://doi.org/10.1090/ulect/010

[6] Humphreys, J.E. (1978) Introduction to Lie Algebras and Representation Theory. Vol. 9 of Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin.

[7] Bourbaki, N. (1971) Fi Elfiements de mathfiematique. Fasc. XXVI. Groupes et algfiebres de Lie. Chapitre I: Algfiebres de Lie. Seconde fiedition. Actualitfies Scientifiques et Industrielles, No. 1285, Hermann, Paris.

[8] Chevalley, C. and Eilenberg, S. (1948) Cohomology Theory of Lie Groups and Lie Algebras. Transactions of the American Mathematical Society, 63, 85-124.

https://doi.org/10.1090/S0002-9947-1948-0024908-8

[9] Gel fand, I.M. and Fuks, D.B. (1968) Cohomologies of the Lie Algebra of Vector Fields on the Circle. Funkcional. Anal. i Prilofizen., 2, 92-93.

[10] Bott, R., Bowman, R. and N.M.S.U.D. of Mathematical Sciences (1975) Gel’fand-Fuks Cohomology and Foliations. Proceedings of the Eleventh Annual Holiday Symposium at New Mexico State University, 27-31 December 1973, Dept. of Mathematical Sciences, New Mexico State University.

[11] Khesin, B. and Wendt, R. (2009) The Geometry of Infinite-Dimensional Groups. Vol. 51 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin.

[12] Fiallo, J.C. (2013) Lie Algebra Cohomology.

http://www.math.ubc.ca/~reichst/Lie-Algebra-Cohomology.pdf

[13] Belavin, A.A., Polyakov, A.M. and Zamolodchikov, A.B. (1984) Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory. Nuclear Physics B, 241, 333-380.

https://doi.org/10.1016/0550-3213(84)90052-X

[14] Neuenschwander, D.E. (2011) Emmy Noether’s Wonderful Theorem. John Hopkins University Press.

[15] Kohno, T. (2002) Conformal Field Theory and Topology. Vol. 210 of Translations of Mathematical Monographs. American Mathematical Society, Providence.

https://doi.org/10.1090/mmono/210