Back
 MSA  Vol.10 No.3 , March 2019
Nanostructure of Rutile TiO2 Thin Films Prepared on Unheated Substrate by Dual Cathode DC Unbalanced Magnetron Sputtering
Abstract: In this work, structural and optical properties of the TiO2 films deposited on unheated substrates by dual cathode dc unbalanced magnetron sputtering at long substrate-target distance (ds-t) were studied. Titanium dioxide (TiO2) thin films were deposited on unheated Si (110) wafers, glass slides and carbon coated copper grids at different substrate to target (ds-t) distances. The structural properties of TiO2 thin films were characterized by X-ray diffraction (XRD) and transmission electron microcopy (TEM) with selected-area electron diffraction (SAED), surface morphology using atomic force microscopy (AFM) and optical transmission spectra using a spectrophotometer. XRD results show that TiO2 films deposited at various ds-t distances have only rutile crystal structure. The crystallinity and thickness of the films increased while the roughness decreased with decreasing ds-t distance. The refractive indices of the deposited films were found to be in the range of 2.51 - 2.82 and increased with decreasing ds-t distance.
Cite this paper: Kongsri, W. , Limsuwan, S. , Chaiyakun, S. , Limsuwan, P. and Kedkaew, C. (2019) Nanostructure of Rutile TiO2 Thin Films Prepared on Unheated Substrate by Dual Cathode DC Unbalanced Magnetron Sputtering. Materials Sciences and Applications, 10, 216-226. doi: 10.4236/msa.2019.103018.
References

[1]   Zeman, P. and Takabayashi, S. (2002) Effect of Total and Oxygen Partial Pressures on Structure of Photocatalytic TiO2 Films Sputtered on Unheated Substrate. Surface and Coatings Technology, 153, 93-99.
https://doi.org/10.1016/S0257-8972(01)01553-5

[2]   Zheng, S.K., Wang, T.M., Xiang, G. and Wang, C. (2001) Photocatalytic Activity of Nanostructured TiO2 Thin Films Prepared by DC Magnetron Sputtering Method. Vacuum, 62, 361-366.
https://doi.org/10.1016/S0042-207X(01)00353-0

[3]   Zeman, P. and Takabayashi, S. (2003) Nano-Scaled Photocatalytic TiO2 Thin Films Prepared by Magnetron Sputtering. Thin Solid Films, 433, 57-62.
https://doi.org/10.1016/S0040-6090(03)00311-0

[4]   Song, P.K., Irie, Y., Sato, Y. and Shigesato, Y. (2004) Crystal Structure and Photocatalytic Activity of TiO2 Films Deposited by Reactive Sputtering Using Ne, Ar, Kr, or Xe Gases. Japanese Journal of Applied Physics, 43, L358.
https://doi.org/10.1143/JJAP.43.L358

[5]   Zhang, I., Li, M., Feng, Z., Chen, J. and Li, C. (2006) UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. The Journal of Physical Chemistry B, 110, 927-935.
https://doi.org/10.1021/jp0552473

[6]   Reidy, D.J., Holmes, J.D. and Morris, M.A. (2006) Preparation of a Highly Thermally Stable Titania Anatase Phase by Addition of Mixed Zirconia and Silica Dopants. Ceramics International, 32, 235-239.
https://doi.org/10.1016/j.ceramint.2005.02.009

[7]   Sumita, T., Otsuka, H., Kubota, H., Nagata, M., Honda, Y., Miyagawa, R., Tsurushima, T. and Sadoh, T. (1999) Ion-Beam Modification of TiO2 Film to Multilayered Photo-catalyst. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 148, 758-761.
https://doi.org/10.1016/S0168-583X(98)00809-X

[8]   Karunagaran, B., Kumar, R.T., Kumar, V.S., Mangalaraj, D., Narayandass, S.K. and Rao, G.M. (2003) Structural Characterization of DC Magnetron-Sputtered TiO2 Thin Films Using XRD and Raman Scattering Studies. Materials Science in Semiconductor Processing, 6, 547-550.
https://doi.org/10.1016/j.mssp.2003.05.012

[9]   Miao, L., Jin, P., Kaneko, K., Terai, A., Gabain, N. and Tanemura, S. (2003) Preparation and Characterization of Polycrystalline Anatase and Rutile TiO2 Thin Films by RF Magnetron Sputtering. Applied Surface Science, 212-213, 255-263.
https://doi.org/10.1016/S0169-4332(03)00106-5

[10]   Buscema, C.L., Malibert, C. and Bach, S. (2002) Elaboration and Characterization of Thin Films of TiO2 Prepared by Sol-Gel Process. Thin Solid Films, 418, 79-84.
https://doi.org/10.1016/S0040-6090(02)00714-9

[11]   Bhattacharyya, D., Sahoo, N.K., Thakur, S. and Das, N.C. (2000) Spectroscopic Ellipsometry of TiO2 Layers Prepared by Ion-Assisted Electron-Beam Evaporation. Thin Solid Films, 360, 96-102.
https://doi.org/10.1016/S0040-6090(99)00966-9

[12]   Meng, L.J. and Santos, M.P. (1993) Investigations of Titanium Oxide Films Deposited by D.C. Reactive Magnetron Sputtering in Different Sputtering Pressures. Thin Solid Films, 226, 22-29.
https://doi.org/10.1016/0040-6090(93)90200-9

[13]   Toku, H., Pessoa, R.S., Maciel, H.S., Massi, M. and Mengui, U.A. (2008) The Effect of Oxygen Concentration on the Low Temperature Deposition of TiO2 Thin Films. Surface and Coatings Technology, 202, 2126-2131.
https://doi.org/10.1016/j.surfcoat.2007.08.075

[14]   Lobl, P., Huppertz, M. and Mergel, D. (1994) Nucleation and Growth in TiO2 Films Prepared by Sputtering and Evaporation. Thin Solid Films, 251, 72-79.
https://doi.org/10.1016/0040-6090(94)90843-5

[15]   Zhang, Y., Ma, X., Chen, P., Yang, D. and Cryst, J. (2007) Effect of the Substrate Temperature on the Crystallization of TiO2 Films Prepared by DC Reactive Magnetron Sputtering. Journal of Crystal Growth, 300, 551-554.
https://doi.org/10.1016/j.jcrysgro.2007.01.008

[16]   Kim, S.H., Choi, Y.L., Song, Y.S., Lee, D.Y. and Lee, S.J. (2002) Influence of Sputtering Parameters on Microstructure and Morphology of TiO2 Thin Films. Materials Letters, 57, 343.
https://doi.org/10.1016/S0167-577X(02)00788-7

[17]   Suhail, M.H., Rao, G.M. and Mohan, S. (1992) Dc Reactive Magnetron Sputtering of Titanium Structural and Optical Characterization of TiO2 Films. Journal of Applied Physics, 71, 1421-1427.
https://doi.org/10.1063/1.351264

[18]   Mardare, D. and Stancu, A. (2000) On the Optical Constants of TiO2 Thin Films. Ellipsometric Studies. Materials Research Bulletin, 35, 2017-2025.
https://doi.org/10.1016/S0025-5408(00)00408-6

[19]   Pamu, D., Krishna, M.G., Raju, K.C. and Bhatnagar, A.K. (2005) Ambient Temperature Growth of Nanocrystalline Titanium Dioxide Thin Films. Solid State Communications, 135, 7-10.
https://doi.org/10.1016/j.ssc.2005.04.003

[20]   Swanepoel, R. (1984) Determination of Surface Roughness and Optical Constants of Inhomogeneous Amorphous Silicon Films. Journal of Physics E: Scientific Instruments, 17, 896.
https://doi.org/10.1088/0022-3735/17/10/023

[21]   Shibata, A., Okimura, K., Yamamoto, Y. and Matubara, K. (1993) Effect of Heating Probe on Reactively Sputtered TiO2 Film Growth. Japanese Journal of Applied Physics, 32, 5666-5670.
https://doi.org/10.1143/JJAP.32.5666

[22]   Window, B. and Savvides, N. (1986) Electron Stimulated Desorption and Its Relation to Molecular Structure at Surfaces. Journal of Vacuum Science & Technology A, 4, 453.
https://doi.org/10.1116/1.573904

[23]   Witit-Anun, N., Kasemanankul, Chaiyakun, S., Pokaipisit, A. and Limsuwan, P. (2010) Comparison of Nanocrystalline TiO2 Films Prepared on Unheated Substrates Using Single- and Dual-Cathode DC Unbalanced Magnetron Sputtering Systems. Japanese Journal of Applied Physics, 49, Article ID: 051101.
https://doi.org/10.1143/JJAP.49.051101

[24]   Okimura, K., Shibata, A., Maeda, N. and Tachibana, K. (1995) Preparation of Rutile TiO2 Films by RF Magnetron Sputtering. Japanese Journal of Applied Physics, 34, 4950.
https://doi.org/10.1143/JJAP.34.4950

[25]   Shakibania, R. (2017) Kinetic Model for Nanocrystalline Anatase to Rutile Polymorphic Transformation. Chemical and Biochemical Engineering Quarterly, 31, 353-359.
https://doi.org/10.15255/CABEQ.2017.1094

[26]   Tapabrata, D., Sidhartha, S.J. and Dillip, K.P. (2016) Equilibrium State of Anatase to Rutile Transformation for Nano-Structured Titanium Dioxide Powder Using Polymer Template Method. IOP Conference Series: Materials Science and Engineering, Vol. 115.

[27]   Wasa, K. and Hayakawa, S. (1993) Handbook of Sputter Deposition Technology: Principles, Technology and Applications. William Andrew, Norwich.

 
 
Top