AS  Vol.10 No.3 , March 2019
Health Risks Assessment in Three Urban Farms of Paris Region for Different Scenarios of Urban Agricultural Users: A Case of Soil Trace Metals Contamination
Abstract: Within the context of a worldwide emergence of various forms of urban agriculture, there is a growing awareness concerning the health risks associated to the presence of different pollutants influencing the urban products safety. Among the most common pollutants found in soils and vegetables grown in the city, Trace Metals (TM’s) are of major concern. This paper deals with risks assessment associated with the presence of TM’s in soil, via two main exposure path ways: soil and vegetables ingestions. Risks assessments were conducted for various types of real scenarios encountered in three forms of urban farms near Paris (Ile-de-France Region). The farms have soil TM’s levels in abnormally high concentrations (Pb (Lead), Cd (Cadmium), Hg (Mercury), Cu (Copper) and Zn (Zinc) contents higher than geochemical backgrounds and threshold values for sludge spreading, often used as reference values in France). The results of the Hazard Quotient (HQ)-based risk assessment approach (HQ defined as the ratio of estimated daily intake/tolerable daily intake) show that the most risky scenarios concern urban farmers (HQtot = 1.02, because of the on-site working on a daily basis all year round), children gardeners (HQtot = 1.29) and regular children consumers (HQtot = 1.6 in maximalist scenario, where the consumer would exclusively consume the vegetables of the farm). Next would be the adult gardener scenario (HQtot= 0.9), while the least risky are adult consumer scenarios (HQtot = 0.62) and the farm workers (HQtot = 0.45). For the highest risk scenarios (urban farmers and children), specific and drastic measures may be considered, such as reducing the site frequentation by sensitive populations (child and pregnant women) or proceeding to control analysis of TM’s levels in blood for the most exposed peoples. The choice of parameters used in HQ-based method must be appropriated to the specificities of urban agricultural activities. The uncertainties in the choice of some parameters such as soil ingestion, vegetable intake and exposure frequency could result in an over- or under-estimation of the risk.
Cite this paper: Barbillon, A. , Aubry, C. , Nold, F. , Besancon, S. and Manouchehri, N. (2019) Health Risks Assessment in Three Urban Farms of Paris Region for Different Scenarios of Urban Agricultural Users: A Case of Soil Trace Metals Contamination. Agricultural Sciences, 10, 352-370. doi: 10.4236/as.2019.103029.

[1]   Schneider, G. and Fast, V. (2017) Mapping the Growing Capacity of Climate Smart Food in Urban Environments. Canadian Food Studies, 4, 4-24.

[2]   Morel-Chevillet, G. (2017) Agriculteurs urbains—Du balcon à la profession découverte des pionniers de la production agricole en ville. France Agricole.

[3]   Rouillon, M., Harvey, P.J., Kristensen, L.J., George, S.G. and Taylor, M.P. (2017) VegeSafe: A Community Science Program Measuring Soil-Metal Contamination, Evaluating Risk and Providing Advice or Safe Gardening. Environmental Pollution, 222, 557-566.

[4]   Rémy, E., Douay, F., Canavese, M., Lebeau, T., Berthier, N., Branchu, P. and Pinte, E. (2015) Jardins collectifs urbains et contaminations des sols: Quels enjeux en termes d’évaluation et de gestion des risques.

[5]   Säumel, I., Kotsyuk, I., Hölscher, M., Lenkereit, C., Weber, F. and Kowarik, I. (2012) How Healthy Is Urban Horticulture in High Traffic Areas? Trace Metal Concentrations in Vegetable Crops from Plantings within Inner City Neighbourhoods in Berlin, Germany. Environmental Pollution, 165, 124-132.

[6]   Leake, J.R., Adam-Bradford, A., Janette, E. and Rigby, J.E. (2009) Health Benefits of “Grow Your Own” Food in Urban Areas: Implications for Contaminated Land Risk Assessment and Risk Management. Environmental Health, 8, 129-238.

[7]   Litt, J.S., Soobader, M.J., Turbin, M.S., Hale, J.W., Buchenau, M. and Marshall, J.A. (2011) The Influence of Social Involvement, Neighborhood Aesthetics, and Community Garden Participation on Fruit and Vegetable Consumption. American Journal of Public Health, 101, 1466-1473.

[8]   Schwartz, C., Chenot, E.D., Douay, F., Dumat, C., Pernin, C. and Pourrut, B. (2013) Jardins Potagers: Terres Inconnues? EDP Sciences, ADEME 7417.

[9]   Izquierdo, M., De Miguel, E., Ortega, M.F. and Mingot, J. (2015) Bioaccessibility of Metals and Human Health Risk Assessment in Community Urban Gardens. Chemosphere, 135, 312-318.

[10]   Rinklebe, J., Antoniadis, V., Shaheen, S.M., Rosche, O. and Altermann, M. (2019) Health Risk Assessment of Potentially Toxic Elements in Soils along the Central Elbe River, Germany. Environment International, 126, 76-88.

[11]   Laidlaw, M.A.S., Alankarage, D.H., Reichman, S.M., Taylor, M.P. and Andrew, S.B. (2018) Assessment of Soil Metal Concentrations in Residential and Community Vegetable Gardens in Melbourne, Australia. Chemosphere, 199, 303-311.

[12]   Warming, M., Hansen, M.G., Holm, P.E., Magid, J., Hansen, T.H. and Trapp, S. (2015) Does Intake of Trace Elements through Urban Gardening in Copenhagen Pose a Risk to Human Health? Environmental Pollution, 202, 17-23.

[13]   Pelfrêne, A., Douay, F., Richard, A., Roussel, H. and Girondelot, B. (2013) Assessment of Potential Health Risk for Inhabitants Living near a Former Lead Smelter. Part 2: Site-Specific Human Health Risk Assessment of Cd and Pb Contamination in Kitchen Gardens. Environmental Monitoring Assessment, 185, 2999-3012.

[14]   Sipter, E., Rozsa, E., Gruiz, K., Tatrai, E. and Morvai, V. (2008) Site-Specific Risk Assessment in Contaminated Veetable Gardens. Chemosphere, 71, 1301-1307.

[15]   Gitton, C., Verger, Y., Brondeau, F., Charvet, R., Nold, F., Branchu, P., Douay, F., Lamy, I., Mougin, C., Petit, C. and Rémy, E. (2018) The Circular Economy: Vicious or Virtuous Circle? The Case of Vegetable Gardens Used to Develop Green Spaces. Geocarrefour.

[16]   Trochet, J.R., Péru, J.J. and Roy, J.M. (2003) Jardinages en région parisienne du XVIIe au XXe siècle. Créaphis.

[17]   MTES (Ministry of Ecological and Solidarity Transition) (2017) Direction générale de la Prévention des Risques, National Policy for managing contaminated land.

[18]   Saby, N., Arrouays, D., Boulonne, L., Jolivet, C. and Pochot, A. (2005) Geostatistical Assessment of Pb in Soil around Paris, France. Science of the Total Environment, 367, 212-221.

[19]   Tanguy, J., Zeghnoun, A. and Frédéric Dor, F. (2007) Description du poids corporel en fonction du sexe et de l’âge dans la population française. Environnement, Risques et Santé, 6, 179-187.

[20]   MTES (Ministry of Ecological and Solidarity Transition) (2007) La démarche d’Interprétation des Milieux.

[21]   CIRE, Ile-de-France (2010) Jardins Familiaux du Fort d’Aubervilliers: Avis de la Cire Ile-de-France sur l’étude d’HPC Envirotec pour AFTRP.

[22]   ANSES (2013) Expositions au plomb: Effets sur la santé associés à des plombémies inférieures à 100 μg/L.

[23]   OEHHEA (2011) Regulatory Guidance of Californian State.

[24]   EFSA (2012) Scientific Report on Cadmium Dietary Exposure in the European Population. EFSA Journal, 10, 2551.

[25]   INERIS

[26]   US EPA (2005) Toxicological Review of Zinc and Compunds.

[27]   Mathieu, A., Baize, D., Raoul, C. and Daniau, C. (2008) Proposition de référentiels régionaux en éléments traces métalliques dans les sols: Leur utilisation dans les évaluations des risques sanitaires. Environnement, Risques & Santé, 7, 112-122.

[28]   He, Z., Shentu, J., Yang, X., Baligar, V.C., Zhang, T. and Stoffella, P.J. (2015) Heavy Metal Contamination of Soils: Sources, Indicators, and Assessment. Journal of Environmental Indicators, 9, 17-18.

[29]   HCSP (2014) Expositoins au plomb: Détermination de nouveaux objectifs de gestion.

[30]   ANSES (2012) EAT2 Etude étude de l’alimentation totale française 2.

[31]   Mench, M. and Baize, D. (2004) Contamination des sols et de nos aliments d’origine végétale par les éléments en traces. Courrier de l’environnement de l’INRA, No. 52.

[32]   Tremel-Schaub, A. and Feix, I. (2005) Contamination des sols—Transferts des sols vers les plantes. EDP Sciences—ADEME.

[33]   INERIS (2015) Paramètres d’exposition de l’Homme du logiciel MODUL’ERS.

[34]   Davis, S. and Mirick, D.K. (2006) Soil Ingestion in Children and Adults in the Same Family. Journal of Exposure Science & Environmental Epidemiology, 16, 63-75.

[35]   Stanek, E., Calabrese, E., Barnes, R. and Pekow, P. (1997) Soil Ingestion in Adults—Results of a Second Pilot Study. Ecotoxicology and Environmental Safety, 36, 249-257.

[36]   Stanek, E. and Calabrese, E. (2000) Daily Soil Ingestion for Children at Superfund Site. Risk Analysis, 20, 627-635.

[37]   US EPA (2011) Exposure Factors Handbook.

[38]   AgroBio Basse-Normandie (2015) Maraîchage bio en Basse-Normandie: Des clés pour se repérer.

[39]   ANSES (2009) INCA 2: Individual Survey of National Food Consumption, INCA2 2006-2007.

[40]   ANSES (1999) INCA 1: Individual Survey of National Food Consumption, INCA1 1998-1999.

[41]   Dubeaux, D. (1994) Les français ont la main verte. INSEE Première, 338.

[42]   González-Grijalva, B., Meza-Figueroa, D., Romero, F.M., Robles-Morúa, A., Meza-Montenegro, M., García-Rico, L. and Ochoa-Contreras, R. (2019) The Role of Soil Mineralogy on Oral Bioaccessibility of Lead: Implications for Land Use and Risk Assessment. Science of the Total Environment, 657, 1468-1479.

[43]   Pan, W., Kang, Y., Li, N., Zeng, L., Zhang, Q., Wu, J., Lu, P., Luo, J. and Guo, X. (2016) Bioaccessibility of Heavy Metals in Vegetables and Its Association with the Physicochemical Characteristics. Environmental Science and Pollution Research, 23, 5335-5341.