Back
 JAMP  Vol.7 No.3 , March 2019
Active Control of Chaotic Oscillations in Nonlinear Chemical Dynamics
Abstract: Abstract: This work studies the active control of chemical oscillations governed by a forced modified Van der Pol-Duffing oscillator. We considered the dynamics of nonlinear chemical systems subjected to an external sinusoidal excitation. The approximative solution to the first order of the modified Van der Pol-Duffing oscillator is found using the Lindstedt’s perturbation method. The harmonic balance method is used to find the amplitudes of the oscillatory states of the system under control. The effects of the constraint parameter and the control parameter of the model on the amplitude of oscillations are presented. The effects of the active control on the behaviors of the model are analyzed and it appears that with the appropriate selection of the coupling parameter, the chaotic behavior of the model has given way to periodic movements. Numerical simulations are used to validate and complete the analytical results obtained.
Cite this paper: Olabodé, D. , Lamboni, B. and Orou, J. (2019) Active Control of Chaotic Oscillations in Nonlinear Chemical Dynamics. Journal of Applied Mathematics and Physics, 7, 547-558. doi: 10.4236/jamp.2019.73040.
References

[1]   Epstein, I.R. and Showalter, K. (1996) Nonlinear Chemical Dynamics: Oscillations, Patterns, and Chaos. Journal of Physical Chemistry, 100, 13132-13147.
https://doi.org/10.1021/jp953547m

[2]   Enjieu Kadji, H.G., Chabi Orou, J.B. and Woafo, P. (2008) Regular and Chaotic Behaviors of Plasma Oscillations Modeled by a Modified Duffing Equation. Physica Scripta, 77, Article ID: 1025503.
https://doi.org/10.1088/0031-8949/77/02/025503

[3]   Miwadinou, C.H., Monwanou, A.V., Hinvi, A.L., Koukpemedji, A.A., Ainamon, C., and Chabi Orou, J.B. (2016) Melnikov Chaos in a Modified Rayleigh-Duffing Oscillator with O6 Potential. International Journal of Bifurcation and Chaos, 26, Article ID: 1650085.
https://doi.org/10.1142/S0218127416500851

[4]   Sprott, J.C. (2010) Elegant Chaos: Algebraically Simple Chaotic Flows. World Scientific, Singapore.
https://doi.org/10.1142/7183

[5]   Yamapi, R., Filatrella, G., Aziz-Alaoui, M.A. and Enjieu Kadji, H.G. (2014) Modeling, Stability, Synchronization, and Chaos and Their Applications to Complex Systems. Abstract and Applied Analysis, 2, Article ID: 953813.
https://doi.org/10.1155/2014/953813

[6]   Hayashi, C. (1964) Nonlinear Oscillations in Physical Systems. McGraw Hill, New York.

[7]   Nayfeh, A.H. (1981) Introduction to Perturbation Techniques. John Wiley and Sons, New York.

[8]   Strogatz, S.H. (1994) Nonlinear Dynamics and Chaos with Applications to Physics, Chemistry, and Engineering. Westview, Cambridge.

[9]   Soong, T.T. (1990) Active Structural Control Theory and Practice. John Wiley and Son, New York.

[10]   Olabodé, D.L., Miwadinou, C.H., Monwanou, A.V. and Chabi Orou, J.B. (2018) Horseshoes Chaos and Its Passive Control in Dissipative Nonlinear Chemical Dynamics. Physica Scripta, 93, Article ID: 085203.
https://doi.org/10.1088/1402-4896/aacef0

[11]   Enjieu Kadji, H.G. and Nana Nbendjo, B.R. (2012) Passive Aerodynamics Control of Plasma Instabilities. Communications in Nonlinear Science and Numerical Simulation, 17, 1779-1794.
https://doi.org/10.1016/j.cnsns.2011.09.017

[12]   Hackl, K., Yang, C.Y. and Cheng, A.H.D. (1993) Stability, Bifurcation and Chaos of Non-Linear Structures with Control I. Autonomous Case. International Journal of Non-Linear Mechanics, 28, 441-454.
https://doi.org/10.1016/0020-7462(93)90018-G

[13]   Yamapi, R., Nana Nbendjo, B.R. and Enjieu Kadji, H.G. (2007) Dynamics and Active Control of a Motion of a Driven Multi-Lmit-Cycle Van der Pol Oscillator. International Journal of Bifurcation and Chaos, 17, 1343-1354.
https://doi.org/10.1142/S0218127407017847

[14]   Tchoukuegno, R. and Woafo, P. (2002) Dynamics and Active Control of Motion of a Particle in a 6 Potential with a Parametric Forcing. Physica D, 167, 86.
https://doi.org/10.1016/S0167-2789(02)00447-5

[15]   Tchoukuegno, R., Nana Nbendjo, B.R. and Woafo, P. (2003) Linear Feedback and Parametric Controls of Vibration and Chaotic Escape in a 6 Potential. International Journal of Non-Linear Mechanics, 38, 531-541.
https://doi.org/10.1016/S0020-7462(01)00081-6

[16]   Nana Nbendjo, B.R. and Yamapi, R. (2007) Active Control of Extended Van der Pol Equation. Communications in Nonlinear Science and Numerical Simulation, 12, 1550-1559.
https://doi.org/10.1016/j.cnsns.2006.01.016

[17]   Cheng, A.H.D., Yang, C.Y., Hackl, K. and Chajes, M.J. (1993) Stability, Bifurcation and Chaos of Non-Linear Structures with Control II, Non-Autonomous Case. International Journal of Non-Linear Mechanics, 28, 549-565.
https://doi.org/10.1016/0020-7462(93)90047-O

[18]   Francescutto, A. and Contento, G. (1999) Bifurcations in Ship Rolling: Experimental Results and Parameter Identification Technique. Ocean Engineering, 26, 1095-1123.
https://doi.org/10.1016/S0029-8018(98)00061-4

[19]   Nana Nbendjo, B.R., Salissou, Y. and Woafo, P. (2005) Active Control with Delay of Catastrophic Motion and Horseshoes Chaos in a Single Well Duffing Oscillator. Chaos, Solitons and Fractals, 23, 809-816.
https://doi.org/10.1016/j.chaos.2004.05.041

[20]   Miwadinou, C.H., Monwanou, A.V., Yovogan, J., Hinvi, L.A., Nwagoum Tuwa, P.R. and Chabi Orou, J.B. (2018) Modeling Nonlinear Dissipative Chemical Dynamics by a Forced Modified Van der Pol-Duffing Oscillator with Asymmetric Potential: Chaotic Behaviors Predictions. Chinese Journal of Physics, 56, 1089-1104.
https://doi.org/10.1016/j.cjph.2018.03.033

[21]   Boissonade, J. and De Kepper, P. (1980) Transitions from Bistability to Limit Cycle Oscillations. Theoretical Analysis and Experimental Evidence in an Open Chemical System. The Journal of Physical Chemistry, 84, 501-506.
https://doi.org/10.1021/j100442a009

[22]   Bartuccelli, M., Gentile, G. and Wright, J.A. (2016) Stable Dynamics in Forced Systems with Sufficiently High/Low Forcing Frequency. Chaos, 26, Article ID: 083108.
https://doi.org/10.1063/1.4960614

[23]   Lam, L. (1997) Introduction to Nonlinear Physics. Springer-Verlag Inc., New York.
https://doi.org/10.1007/978-1-4612-2238-5

[24]   Rand, R.H. (2005) Lecture Notes on Nonlinear Vibrations. Version 52.

[25]   Nayfey, A.H. and Mook, D.T. (1979) Nonlinear Oscillations. John Wiley and Sons, New York.

 
 
Top