Back
 OJCM  Vol.9 No.2 , April 2019
Preparation of Fluoroalkyl End-Capped Oligomers/Hexagonal Boron Nitride Nanocomposites Possessing No Weight Loss Behavior in Nanocomposites Even after Calcination at 800°C
Abstract: Fluoroalkyl end-capped acrylic acid oligomer [RF-(ACA)n-RF]/hexagonal boron nitride (h-BN) nanocomposites [RF-(ACA)n-RF/h-BN] were prepared by reaction of the corresponding oligomer with h-BN nanoparticles (mean diameter: 50 nm) under non-catalytic or alkaline conditions, respectively. Fluoroalkyl end-capped N,N-dimethylacrylamide oligomer/h-BN nanocomposites [RF-(DMAA)n-RF/h-BN] were also obtained under similar conditions. It was demonstrated that RF-(ACA)n-RF/h-BN nanocomposites, which were prepared under alkaline conditions, afforded a clear weight loss in proportion to the contents of the oligomer in the composites after calcination at 800°C; however, the non-catalytic conditions enabled the RF-(ACA)n-RF/h-BN nanocomposite to give no weight loss behavior corresponding to the contents of the oligomer even after calcination. In fact, it was demonstrated that the RF-(ACA)n-RF/h-BN nanocomposites possessing a clear weight loss property could afford the fluorescent peak around 370 nm related to h-BN in the composites; however, the same fluorescent intensity of this nanocomposite after calcination at 800°C as that of the original h-BN was observed, indicating that this nanocomposite could give a clear weigh loss behavior corresponding to the content of the oligomer during the calcination process. In contrast, the RF-(ACA)n-RF/h-BN nanocomposites possessing no weigh loss behavior were found to exhibit the similar fluorescent intensity before and even after calcination at 800°C, suggesting that the corresponding nanocomposites could provide no weight loss ability corresponding to the contents of the oligomer in the composites even after calcination. Similarly, RF-(DMAA)n-RF/h-BN nanocomposites, which were prepared under non-catalytic or alkaline conditions, were found to provide no weight loss corresponding to the contents of the oligomer even after calcination, respectively. These fluorinated h-BN nanocomposites were applied to the surface modification of PMMA [poly(methyl methacrylate)] to exhibit an oleophobic property on the modified PMMA surface. RF-(ACA)n-RF/h-BN nanocomposites possessing a clear weight loss behavior, whose composites were calcinated at 800°C, afforded not oleophobic but oleophilic property on the modified PMMA surface, quite similar to that of the pristine PMMA film surface; however, more interestingly, we found that RF-(ACA)n-RF/ and RF-(DMAA)n-RF/h-BN nanocomposites possessing no weight loss characteristic, whose composites were calcined at 800°C, could supply a good oleophobic property related to the fluoroalkyl segments in the composites on the modified PMMA surfaces, respectively.
Cite this paper: Saengkaew, J. , Ogasawara, T. , Yamashita, K. , Kongparakul, S. and Sawada, H. (2019) Preparation of Fluoroalkyl End-Capped Oligomers/Hexagonal Boron Nitride Nanocomposites Possessing No Weight Loss Behavior in Nanocomposites Even after Calcination at 800°C. Open Journal of Composite Materials, 9, 72-98. doi: 10.4236/ojcm.2019.92004.
References

[1]   Gomez-Romero, P. and Sanchez, C. (Eds.) (2004) Functional Hybrid Materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

[2]   Novak, B.M. (1993) Hybrid Nanocomposite Materials—Between Inorganic Glasses and Organic Polymers. Advanced Materials, 5, 422-433.
https://doi.org/10.1002/adma.19930050603

[3]   Corriu, R.J.P. (2000) Ceramics and Nanostructures from Molecular Precursors. Angewandte Chemie International Edition, 39, 1376-1398.
https://doi.org/10.1002/(SICI)1521-3773(20000417)39:8<1376::AID-ANIE1376>3.0.CO;2-S

[4]   Paine, R.T. and Narula, C.K. (1990) Synthetic Routes to Boron Nitride. Chemical Reviews, 90, 73-91.
https://doi.org/10.1021/cr00099a004

[5]   Zheng, Z.Y., Cox, M. and Li, B. (2018) Surface Modification of Hexagonal Boron Nitride Nanomaterials: A Review. Journal of Materials Science, 53, 66-99.
https://doi.org/10.1007/s10853-017-1472-0

[6]   Joni, I.M., Balgis, R., Ogi, T., Iwaki, T. and Okuyama, K. (2011) Surface Functionalization for Dispersing and Stabilizing Hexagonal Boron Nitride Nanoparticle by Bead Milling. Colloids Surfaces A: Physicochemical and Engineering Aspects, 388, 49-58.
https://doi.org/10.1016/j.colsurfa.2011.08.007

[7]   Ciofani, G., Genchi, G.G., Liakos, I., Athanassiou, A., Dinucci, D., Chiellini, F. and Mattoli, V. (2012) A Simple Approach to Covalent Functionalization of Boron Nitride Nanotubes. Journal of Colloid and Interface Science, 374, 308-314.
https://doi.org/10.1016/j.jcis.2012.01.049

[8]   Sainsbury, T., Satti, A., May, P., Wang, Z., McGovern, I., Gun’ko, Y.K. and Coleman, J. (2012) Oxygen Radical Functionalization of Boron Nitride Nanosheets. Journal of the American Chemical Society, 134, 18758-18771.
https://doi.org/10.1021/ja3080665

[9]   Madakba, S., Sen, F., Kahraman, M.V. and Dumludag, F. (2014) Preparation, Characterization, Thermal, and Dielectric Properties of Polypyrrole/h-BN Nanocomposites. Advances in Polymer Technology, 1-8.
https://doi.org/10.1002/adv.21438

[10]   Furlotti, M., Caputo, R., Krumeich, F. and Nesper, R. (2015) Seamless Rim-Functionalization of h-BN with Silica—Experiment and Theoretical Modeling. Chemistry: A European Journal, 21, 7662-7667.
https://doi.org/10.1002/chem.201500353

[11]   Huang, Q., Bando, Y., Zhi, C., Golberg, D., Kurashima, K., Xu, F. and Gao, L. (2006) Chemical Peeling and Branching of Boron Nitride Nanotubes in Dimethyl Sulfoxide. Angewandte Chemie, 118, 2098-2101.
https://doi.org/10.1002/ange.200504351

[12]   Kisku, S.K. and Swain, S.K. (2012) Synthesis and Characterization of Chitosan/Boron Nitride Composites. Journal of the American Ceramic Society, 95, 2753-2757.
https://doi.org/10.1111/j.1551-2916.2012.05140.x

[13]   Huner, K., Ulutas, K., Deligoz, H., Sartinska, L. and Eren, T. (2017) ROMP-Based Boron Nitride Composites. Journal of Applied Polymer Science, 1-10.
https://doi.org/10.1002/app.45658

[14]   Kizilkaya, C., Mulazim, Y., Kahraman, M.V., Apohan, N.K. and Gungor, A. (2012) Synthesis and Characterization of Polyimide/Hexagonal Boron Nitride Composite. Journal of Applied Polymer Science, 124, 706-712.
https://doi.org/10.1002/app.35054

[15]   Chen, J., Chen, B., Li, J., Tong, X., Zhao, H. and Wang, L. (2017) Enhancement of Mechanical and Wear Resistance Performance in Hexagonal Boron Nitride-Reinforced Epoxy Nanocomposites. Polymer International, 66, 659-664.
https://doi.org/10.1002/pi.5296

[16]   Huang, X., Zhi, C., Jiang, P., Golberg, D., Bando, Y. and Tanaka, T. (2013) Polyhedral Oligosilsesquioxane-Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity. Advanced Functional Materials, 23, 1824-1831.
https://doi.org/10.1002/adfm.201201824

[17]   Ahmad, S., Sultan, A., Raza, W., Muneer, M. and Mohammad, F. (2016) Boron Nitride Based Polyaniline Nanocomposite: Preparation, Property, and Application. Journal of Applied Polymer Science, 1-9.
https://doi.org/10.1002/app.43989

[18]   Li, T.-L. and Hsu, S.L.-C. (2011) Preparation and Properties of Thermally Conductive Photosensitive Polyimide/Boron Nitride Nanocomposites. Journal of Applied Polymer Science, 121, 916-922.
https://doi.org/10.1002/app.33631

[19]   Qin, L., Li, G., Hou, J., Yu, X., Ding, H., Zhang, Q., Wang, N. and Qu, X. (2015) Preparation, Characterization, and Thermal Properties of Poly(methyl methacrylate)/Boron Nitride Composites by Bulk Polymerization. Polymer Composites, 1675-1684.
https://doi.org/10.1002/pc.23078

[20]   Kumar, V.N. and Srinivas, V.S.S. (2016) Enhancement of Thermal Stability of Natural Rubber Based Nano Composite Filled with Boron Nitride. Materials Today: Proceedings, 3, 3878-3881.
https://doi.org/10.1016/j.matpr.2016.11.044

[21]   Zhang, J., Wang, X.N., Yu, C.P., Li, Q.L., Li, Z., Li, C.W., Lu, H.F., Zhang, Q.C., Zhao, J.X., Hu, M. and Yao, Y.G. (2017) A Facile Method to Prepare Flexible Boron Nitride/Poly(vinyl alcohol) Composites with Enhanced Thermal Conductivity. Composites Science and Technology, 149, 41-47.
https://doi.org/10.1016/j.compscitech.2017.06.008

[22]   Huang, X., Jiang, P. and Tanaka, T. (2011) A Review of Dielectric Polymer Composites with High Thermal Conductivity. IEEE Electrical Insulation Magazine, 27, 8-16.
https://doi.org/10.1109/MEI.2011.5954064

[23]   Li, G., Xiang, R., Geng, P., Liu, Z., He, L., Wang, N., Zhang, Q. and Qu, X. (2018) Surface Modification of Boron Nitride via Poly(dopamine) Coating and Preparation of Acrylonitrile-Butadiene-Styrene Copolymer/Boron Nitride Composites with Enhanced Thermal Conductivity. Polymers for Advanced Technologies, 29, 337-346.
https://doi.org/10.1002/pat.4119

[24]   Cao, Y., Deng, Q., Liu, Z., Shen, D., Wang, T., Huang, Q., Du, S., Jiang, N., Lin, C.-T. and Yu, J. (2017) Enhanced Thermal Properties of Poly(vinylidene fluoride) Composites with Ultrathin Nanosheets of MXene. RSC Advances, 7, 20494-20501.
https://doi.org/10.1039/c7ra00184c

[25]   Song, W.-L., Wang, P., Cao, L., Anderson, A., Meziani, M.J., Farr, A.J. and Sun, Y.-O. (2012) Polymer/Boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance. Angewandte Chemie, 124, 6604-6607.
https://doi.org/10.1002/ange.201201689

[26]   Zhi, C., Bando, Y., Tang, C., Honda, S., Sato, K., Kuwahara, H. and Golberg, D. (2005) Characteristics of Boron Nitride Nanotube–Polyaniline Composites. Angewandte Chemie International Edition, 44, 7929-7932.
https://doi.org/10.1002/anie.200502591

[27]   Xiao, Q., Han, W.H., Yang, R.Q., You, Y., Wei, R.B. and Liu, X.B. (2017) Mechanical, Dielectric, and Thermal Properties of Polyarylene Ether Nitrile and Boron Nitride Nanosheets Composites. Polymer Composites, 1-8.
https://doi.org/10.1002/pc.24518

[28]   Ayrilmis, N., Dudar, T., Kaymakci, A., Ozdemir, F. and Heon Kwon, J. (2014) Mechanical and Thermal Properties of Wood-Plastic Composites Reinforced with Hexagonal Boron Nitride. Polymer Composites, 194-200.
https://doi.org/10.1002/pc.22650

[29]   Gu, J., Zhang, Q., Dang, J. and Xie, C. (2012) Thermal Conductivity Epoxy Resin Composites Filled with Boron Nitride. Polymers for Advanced Technologies, 23, 1025-1028.
https://doi.org/10.1002/pat.2063

[30]   Zhu, Z.J., Wang, P.X., Lv, P., Xu, T.H., Zheng, J., Ma, C., Yu, K.H., Feng, W., Wei, W. and Chen, L.Y. (2017) Densely Packed Polymer/Boron Nitride Composite for superior Anisotropic Thermal Conductivity. Polymer Composites, 1-6.
https://doi.org/10.1002/pc.24615

[31]   Ji, T., Zhang, L.-Q., Wang, W.-C., Liu, Y., Zhang, X.-F. and Lu, Y.-L. (2012) Cold Plasma Modification of Boron Nitride Fillers and Its Effect on the Thermal Conductivity of Silicone Rubber/Boron Nitride Composites. Polymer Composites, 1473-1481.
https://doi.org/10.1002/pc.22277

[32]   Chen, B., Luan, D., Huang, J. and Zhang, J. (2015) Enhanced Thermal Conductivity and Wear Resistance of Polytetrafluoroethylene Composites through Boron Nitride and Zinc Oxide Hybrid Fillers. Journal of Applied Polymer Science, 1-7.
https://doi.org/10.1002/app.42302

[33]   He, Y.-M., Wang, Q.-Q., liu, W. and Liu, Y.-S. (2014) Functionalization of Boron Nitride Nanoparticles and Their Utilization in Epoxy Composites with Enhanced Thermal Conductivity. Physica Status Solidi A, 211, 677-684.
https://doi.org/10.1002/pssa.201330305

[34]   Wang, J.W., Li, H.R., Li, G.H., Liu, Z.X., Zhang, Q.X., Wang, N.Y. and Qu, X.W. (2017) Noncovalent Functionalization of Boron Nitride and Its Effect on the Thermal Conductivity of Polycarbonate Composites. Journal of Applied Polymer Science, 1-9.
https://doi.org/10.1002/app.44978

[35]   Ng, H.Y., Lu, X. and Lau, S.K. (2005) Thermal Conductivity of Boron Nitride-Filled Thermoplastics: Effect of Filler Characteristics and Composite Processing Conditions. Polymer Composites, 778-790.
https://doi.org/10.1002/pc.20151

[36]   Fang, H., Bai, S.-L. and Wong, C.P. (2016) “White Graphene”—Hexagonal Boron Nitride Based Polymeric Composites and Their Application in Thermal Management. Composites Communications, 2, 19-24.
https://doi.org/10.1016/j.coco.2016.10.002

[37]   Jiang, Y., Shi, X., Feng, Y., Li, S., Zhou, X. and Xie, X. (2018) Enhanced Thermal Conductivity and Ideal Dielectric Properties of Epoxy Composites Containing Polymer Modified Hexagonal Boron Nitride. Composites Part A: Applied Science and Manufacturing, 107, 657-664.
https://doi.org/10.1016/j.compositesa.2018.02.016

[38]   Yang, N., Xu, C., Hou, J., Yao, Y., Zhang, Q., Grami, M.E., He, L., Wang, N. and Qu, X. (2016) Preparation and Properties of Thermally Conductive Polyimide/Boron Nitride Composites. RSC Advances, 6, 18279-18287.
https://doi.org/10.1039/C6RA01084A

[39]   Cakmakci, E., Kocyigit, C., Cakir, S., Durmus, A. and Kahraman, M.V. (2014) Preparation and Characterization of Thermally Conductive Thermoplastic Polyurethane/h-BN Nanocomposites. Polymer Composites, 530-538.
https://doi.org/10.1002/pc.22692

[40]   Madakbas, S., Cakmakcil, E. and Kahraman, M.V. (2013) Preparation and Thermal Properties of Polyacrylonitrile/Hexagonal Boron Nitride Composites. Thermochimica Acta, 552, 1-4.
https://doi.org/10.1016/j.tca.2012.11.011

[41]   Gu, J., Meng, X., Tang, Y., Li, Y., Zhuang, Q. and Kong, J. (2017) Hexagonal Boron Nitride/Polymethyl-Vinyl Siloxane Rubber Dielectric Thermally Conductive Composites with Ideal Thermal Stabilities. Composites Part A: Applied Science and Manufacturing, 92, 27-32.
https://doi.org/10.1016/j.compositesa.2016.11.002

[42]   Gu, J.W., Lv, Z.Y., Wu, Y., Guo, Y.L., Tian, L.D., Qiu, H., Li, W.Z. and Zhang, Q.Y. (2017) Dielectric Thermally Conductive Boron Nitride/Polyimide Composites with Outstanding Thermal Stabilities via in-Situ Polymerization-Electrospinning-Hot Press Method. Composites Part A: Applied Science and Manufacturing, 94, 209-216.
https://doi.org/10.1016/j.compositesa.2016.12.014

[43]   Gao, Y.W., Gu, A.J., Jiao, Y.C., Yang, Y.L., Liang, G.Z., Hu, J.-T., Yao, W. and Yuan, L. (2012) High-Performance Hexagonal Boron Nitride/Bismaleimide Composites with High Thermal Conductivity, Low Coefficient of Thermal Expansion, and Low Dielectric loss. Polymers for Advanced Technologies, 23, 919-928.
https://doi.org/10.1002/pat.1992

[44]   Yu, S.Z., Hing, P. and Hu, X. (2000) Dielectric Properties of Polystyrene-Aluminum-Nitride Composites. Journal of Applied Physics, 88, 398-404.
https://doi.org/10.1063/1.373672

[45]   Sun, J.J., Li, J.B., Sun, G.L., Zhang, B., Zhang, S.X. and Zhai, H.Z. (2002) Dielectric and Infrared Properties of Silicon Carbide Nanopowders. Ceramics International, 28, 741-745.
https://doi.org/10.1016/S0272-8842(02)00037-8

[46]   Camurlu, H.E., Mathur, S., Arslan, O. and Akarsu, E. (2016) Modification of Hexagonal Boron Nitride Nanoparticles with Fluorosilane. Ceramics International, 42, 6312-6318.
https://doi.org/10.1016/j.ceramint.2016.01.019

[47]   Xu, G.F., Xu, W., Guan, A.R. and Cheng, X.N. (2007) Study on Electrical Properties of ZrW2O8/e-51 Electronic Casting Composite Materials. Electron Components Mater., 26, 47-49.

[48]   Zhi, C.Y., Terao, Y., Tang, C.C., Kuwahara, H. and Golberg, D. (2009) Chemically Activated Boron Nitride Nanotubes. Chemistry—An Asian Journal, 4, 1536-1540.
https://doi.org/10.1002/asia.200900158

[49]   Negrov, D.A. and Eremin, E.N. (2016) Structuring Peculiarities of Polytetrafluoroethylene Modified with Boron Nitride when Activated with Ultrasonic Exposure. Procedia Engineering, 152, 570-575.
https://doi.org/10.1016/j.proeng.2016.07.657

[50]   Wang, M., Jiao, Z., Chen, Y., Hou, X., Fu, L., Wu, Y., Li, S., Jiang, N. and Yu, J. (2018) Enhanced Thermal Conductivity of Poly(vinylidene fluoride)/Boron Nitride Nanosheet Composites at Low Filler Content. Composites Part A: Applied Science and Manufacturing, 109, 321-329.
https://doi.org/10.1016/j.compositesa.2018.03.023

[51]   Ameduri, B. and Boutevin, B. (2004) Well-Architectured Fluoropolymers: Synthesis, Properties and Applications. Elsevier B. V., Amsterdam.

[52]   Ameduri, B. and Sawada, H. (Eds.) (2016) Fluorinated Polymers: Volume 1, Synthesis, Properties, Processing and Simulation. RSC, Cambridge.

[53]   Ameduri, B. and Sawada, H. (Eds.) (2016) Fluorinated Polymers: Volume 2, Applications. RSC, Cambridge.

[54]   Sawada, H. (1996) Fluorinated Peroxides. Chemical Reviews, 96, 1779-1808.
https://doi.org/10.1021/cr9411482

[55]   Sawada, H. (2007) Synthesis of Self-Assembled Fluoroalkyl End-Capped Oligomeric Aggregates—Applications of These Aggregates to Fluorinated Oligomeric Nanocomposites. Progress in Polymer Science, 32, 509-533.
https://doi.org/10.1016/j.progpolymsci.2007.02.002

[56]   Sawada, H. (2012) Preparation and Applications of Novel Fluoroalkyl End-Capped Oligomeric Nanocomposites. Polymer Chemistry, 3, 46-65.
https://doi.org/10.1039/C1PY00325A

[57]   Sawada, H. (2003) Novel Self-Assembled Molecular Aggregates Formed by Fluoroalkyl End-Capped Oligomers and Their Application. Journal of Fluorine Chemistry, 121, 111-130.
https://doi.org/10.1016/S0022-1139(03)00040-X

[58]   Oikawa, Y., Saito, T., Idomukai, S., Tanaka, T., Nishida, M. and Sawada, H. (2015) Preparation of Magnesium Carbonate Nanoparticles Encapsulated by Nanocomposite Material Derived from Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomer—Application to the Surface Modification of Glass and Poly(methyl methacrylate). Journal of Fluorine Chemistry, 177, 70-79.
https://doi.org/10.1016/j.jfluchem.2015.02.003

[59]   Saito, T., Tsushima, Y. and Sawada, H. (2015) Facile Creation of Superoleophobic and Superhydrophilic Surface by Using Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomer/Calcium Silicide Nanocomposites—Development of These Nanocomposites to Environmental Cyclical Type-Fluorine Recycle through Formation of Calcium Fluoride. Colloid and Polymer Science, 293, 65-73.
https://doi.org/10.1007/s00396-014-3387-5

[60]   Sawada, H., Narumi, T., Kodama, S., Kamijo, M., Ebara, R., Sugiya, M. and Iwasaki, Y. (2007) A Fluoroalkyl End-Capped N-(1,1-Dimethyl-3-Oxobutyl)Acrylamide Oligomer/Silica Gel Nanocomposite with No Weight Loss Even at 800 °C Equal to an Original Silica Gel. Colloid and Polymer Science, 285, 977-983.
https://doi.org/10.1007/s00396-007-1641-9

[61]   Sawada, H., Shikauchi, Y., Kakehi, H., Katoh, Y. and Miura, M. (2007) Preparation and Applications of Novel Fluoroalkyl End-Capped Oligomers/Calcium Carbonate Nanocomposites. Colloid and Polymer Science, 285, 499-506.
https://doi.org/10.1007/s00396-006-1566-8

[62]   Tsuzuki-ishi, T. and Sawada, H. (2014) Facile One-Pot Preparation of Gold Nanoparticles in the Presence of Fluoroalkyl End-Capped Oligomers, Fluoroalkyl End-Capped Oligomers/Silica Nanocomposites, and Fluoroalkyl End-Capped Oligomers/Polyaniline Nanocomposites. Colloid and Polymer Science, 292, 2959-2969.
https://doi.org/10.1007/s00396-014-3329-2

[63]   Sawada, H., Tashima, T., Kakehi, H., Nishiyama, Y., Kikuchi, M., Miura, M., Sato, Y. and Isu, N. (2010) Fluoroalkyl End-Capped Oligomers Possessing Nonflammable and Flammable Characteristics in Silica Gel Matrices after Calcination at 800°C under Atmospheric Conditions. Polymer Journal, 42, 167-171.
https://doi.org/10.1038/pj.2009.316

[64]   Sawada, H., Sasaki, A. and Sasazawa, K. (2009) Preparation of Size-Controlled Cross-Linked Fluoroalkyl End-Capped Oligomer/Gold Nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 337, 57-60.
https://doi.org/10.1016/j.colsurfa.2008.11.048

[65]   Takashima, H., Iwaki, K., Takishita, K. and Sawada, H. (2009) Preparation and Applications of Novel Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomer/Hydroxyapatite Nanocomposites. Polymers for Advanced Technologies, 20, 887-891.
https://doi.org/10.1002/pat.1320

[66]   Takashima, H., Iwaki, K., Furukuwa, R., Takishita, K. and Sawada, H. (2008) Journal of Colloid and Interface Science, 320, 436-444.
https://doi.org/10.1016/j.jcis.2007.12.029

[67]   Sawada, H., Takashima, H., Iwaki, K., Furukuwa, R. and Takishita, K. (2007) Preparation of Novel Fluoroalkyl End-Capped Oligomer/Hydroxyapatite Nanocomposites. Macromolecular Materials and Engineering, 292, 403-406.
https://doi.org/10.1002/mame.200600462

[68]   Sawada, H., Sasaki, A., Sasazawa, K., Toriba, K., Kakehi, H., Miura, M. and Isu, N. (2008) Preparation of Colloidal Stable Fluoroalkyl End-Capped Oligomer/Silver Nanocomposites—Application to the Surface Modification of Traditional Organic Polymers with These Nanocomposites. Polymers for Advanced Technologies, 19, 419-424.
https://doi.org/10.1002/pat.1027

[69]   Yoshioka, H., Ohnishi, K. and Sawada, H. (2007) Preparation of Fluoroalkyl End-Capped Oligomers/Magnetite Nanocomposites Possessing a Good Dispersibility and Stability. Journal of Fluorine Chemistry, 128, 1104-1111.
https://doi.org/10.1016/j.jfluchem.2007.03.016

[70]   Sawada, H., Furukuwa, R., Sasazawa, K., Mugisawa, M. and Ohnishi, K. (2007) Preparation of Novel Cross-Linked Fluoroalkyl End-Capped Adamantane Cooligomer/Copper Nanocomposites. European Polymer Journal, 43, 3258-3263.
https://doi.org/10.1016/j.eurpolymj.2007.04.050

[71]   Sasazawa, K., Hirayama, Y. and Sawada, H. (2009) Facile Preparation and Characterization of Novel Fluoroalkyl End-Capped Oligomer/Zinc Oxide Nanocomposites. Polymer International, 58, 177-182.
https://doi.org/10.1002/pi.2511

[72]   Mugisawa, M., Kasai, R. and Sawada, H. (2009) Cross-Linked Fluoroalkyl End-Capped Co-Oligomeric Nanoparticle-Encapsulated Fullerene—A New Approach to the Surface Modification of Traditional Organic Polymers with Fullerene-Containing Nanoparticles. Langmuir, 25, 415-421.
https://doi.org/10.1021/la800875s

[73]   Mugisawa, M., Ohnishi, K. and Sawada, H. (2007) Preparation of Novel Fluoroalkyl-End-Capped 2-Acrylamido-2-methylpropanesulfonic Acid Cooligomeric Nanoparticles Containing Adamantane Units Possessing a Lower Critical Solution Temperature Characteristic in Organic Media. Langmuir, 23, 5848-58851.
https://doi.org/10.1021/la062060+

[74]   Kijima, T., Javakhishvili, I., Jankova, K., Hvilsted, S., Kodama, S., Sugiya, M. and Sawada, H. (2012) Controlled Immobilization of Palladium Nanoparticles in Two Different Fluorinated Polymeric Aggregate Cores and Their Application in Catalysis. Colloid and Polymer Science, 290, 589-597.
https://doi.org/10.1007/s00396-011-2567-9

[75]   Sawada, E., Kakehi, H., Chounan, Y., Miura, M., Sato, Y., Isu, N. and Sawada, H. (2010) UV-Induced Switching Behavior of Novel Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomer/Titanium Oxide Nanocomposite between Superhydrophobicity and Superhydrophilicity with Good Oleophobicity. Composites Part B: Engineering, 41, 498-502.
https://doi.org/10.1016/j.compositesb.2010.04.002

[76]   Saito, T., Kakehi, H., Kato, Y., Miura, M., Isu, N. and Sawada, H. (2013) Fluoroalkyl End-Capped Oligomers Possessing Nonflammable Characteristic in Calcium Carbonate Nanocomposites. Polymers for Advanced Technologies, 24, 532-540.
https://doi.org/10.1002/pat.3111

[77]   Sawada, H., Kikuchi, M. and Nishida, M. (2011) Low Molecular Weight Aromatic Compounds Possessing a Nonflammable Characteristic in Fluoroalkyl End-Capped Acrylic Acid Oligomer/Silica Nanocomposite Matrices after Calcination at 800°C under Atmospheric Conditions. Journal of Polymer Science Part A: Polymer Chemistry, 49, 1070-1078.
https://doi.org/10.1002/pola.24516

[78]   Sawada, H., Matsuki, Y., Goto, Y., Kodama, S., Sugiya, M. and Nishiyama, Y. (2010) Preparation of Novel Fluoroalkyl End-Capped Trimethoxyvinylsilane Oligomeric Nanoparticle-Encapsulated Binaphthol: Encapsulated Binaphthol Remaining Thermally Stable Even at 800°C. Bulletin of the Chemical Society of Japan, 83, 75-81.
https://doi.org/10.1246/bcsj.20090204

[79]   Mugisawa, M. and Sawada, H. (2008) Architecture of Linear Arrays of Fluorinated Co-Oligomeric Nanocomposite-Encapsulated Gold Nanoparticles: A New Approach to the Development of Gold Nanoparticles Possessing an Extremely Red-Shifted Absorption Characteristic. Langmuir, 24, 9215-9218.
https://doi.org/10.1021/la8015035

[80]   Guo, S., Yoshioka, H., Kakehi, H., Kato, Y., Miura, M., Isu, N., Ameduri, B. and Sawada, H. (2012) Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomer/Anatase Titanium Oxide Nanocomposites Possessing Photocatalytic Activity Even after Calcination at 1000°C. Journal of Colloid and Interface Science, 387, 141-145.
https://doi.org/10.1016/j.jcis.2012.08.005

[81]   Guo, S., Yoshioka, H., Kato, Y., Kakehi, H., Miura, M., Isu, N., Manseri, A., Sawada, H. and Ameduri, B. (2014) Photocatalytic Activity of Vinylidene Fluoride-Containing Copolymers/Anatase Titanium Oxide/Silica Nanocomposites. European Polymer Journal, 58, 79-89.
https://doi.org/10.1016/j.eurpolymj.2014.04.022

[82]   Guo, S., Ogasawara, T., Saito, T., Kakehi, H., Kato, Y., Miura, M., Isu, N. and Sawada, H. (2013) Preparation and Photocatalytic Activity of Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomer/Anatase Titanium Oxide Nanocomposite-Encapsulated Low Molecular Weight Aromatic Compounds. Colloid and Polymer Science, 291, 2947-2957.
https://doi.org/10.1007/s00396-013-3027-5

[83]   Sawada, H., Gong, Y.F., Minoshima, Y., Matsumoto, T., Nakayama, M., Kosugi, M. and Migita, T. (1992) Synthesis and Surfactant Properties of Fluoroalkylated Oligomers Containing Carboxy Groups. Journal of the Chemical Society, Chemical Communications, 537-538.
https://doi.org/10.1039/c39920000537

[84]   Sawada, H., Yoshino, Y., Ikematsu, Y. and Kawase, T. (2000) Synthesis and Properties of Fluoro-Alkylated End-Capped Acrylamide Oligomers. European Polymer Journal, 36, 231-240.
https://doi.org/10.1016/S0014-3057(99)00086-5

[85]   Watanabe, K., Taniguchi, T. and Kaneda, H. (2004) Direct-Bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal. Nature Materials, 3, 404-409.
https://doi.org/10.1038/nmat1134

[86]   Sawada, H., Yanagida, K., Inaba, Y., Sugiya, M., Kawase, T. and Tomita, T. (2001) Synthesis and Antibacterial Activity of Novel Fluoroalkyl End-Capped Cooligomers Containing Dimethyl(Octyl)Ammonium Segments. European Polymer Journal, 37, 1433-1439.
https://doi.org/10.1016/S0014-3057(01)00005-2

[87]   Kim, K., Kim, M., Hwang, Y. and Kim, J. (2014) Chemically Modified Boron Nitride-Epoxy Terminated Dimethylsiloxane Composite for Improving the Thermal Conductivity. Ceramics International, 40, 2047-2056.
https://doi.org/10.1016/j.ceramint.2013.07.117

[88]   Sawada, H., Tashima, T. and Kodama, S. (2008) Preparation of a Variety of Fluoroalkyl End-Capped N-(1,1-Dimethyl-3-Oxobutyl)Acrylamide Oligomer/Silica Nanocomposites Possessing No Weight Loss Characteristic at 800°C. Polymers for Advanced Technologies, 19, 739-747.
https://doi.org/10.1002/pat.1050

[89]   Sawada, H., Tashima, T., Nishiyama, Y., Kikuchi, M., Kostov, G., Goto, Y. and Ameduri, B. (2011) Iodine Transfer Terpolymerization of Vinylidene Fluoride, α-Trifluoromethacrylic Acid and Hexafluoropropylene for Exceptional Thermostable Fluoropolymers/Silica Nanocomposites. Macromolecules, 44, 1114-1124.
https://doi.org/10.1021/ma102532k

[90]   Sawada, H., Kakehi, H., Tashima, T., Nishiyama, Y., Miura, M. and Isu, N. (2009) Fluoroalkyl End-Capped Oligomer Possessing a Nonflammable Characteristic in Silica Gel Matrices Even at 800°C under Atmospheric Conditions. Journal of Applied Polymer Science, 112, 3482-3487.
https://doi.org/10.1002/app.29942

[91]   Walsh, R. (1981) Bond Dissociation Energy Values in Silicon-Containing Compounds and Some of Their Implications. Accounts of Chemical Research, 14, 246-252.
https://doi.org/10.1021/ar00068a004

[92]   Hildenbrnd, D.L. and Murad, E. (1965) Dissociation Energy of Boron Monofluoride from Mass-Spectrometric Studies. The Journal of Chemical Physics, 43, 1400-1403.
https://doi.org/10.1063/1.1696932

 
 
Top