Back
 MSA  Vol.10 No.3 , March 2019
Patterned Nanofoam Fabrication from a Variety of Materials via Femtosecond Laser Pulses
Abstract: High-repetition-rate femtosecond lasers enable the precise production of nanofoam from a wide range of materials. Here, the laser-based fabrication of nanofoam from silicon, borosilicate glass, sodalime glass, gallium lanthanum sulphide and lithium niobate is demonstrated, where the pore size of the nanofoam is shown to depend strongly on the material used, such that the pore width and nanofibre width appear to increase with density and thermal expansion coefficient of the material. In addition, the patterning of nanofoam on a glass slide, with fabricated pattern pixel resolution of ~35 μm, is demonstrated.
Cite this paper: Grant-Jacob, J. , Mackay, B. , Baker, J. , Xie, Y. , McDonnell, M. , Health, D. , Praeger, M. , Eason, R. and Mills, B. (2019) Patterned Nanofoam Fabrication from a Variety of Materials via Femtosecond Laser Pulses. Materials Sciences and Applications, 10, 186-196. doi: 10.4236/msa.2019.103015.
References

[1]   Bag, S., Trikalitis, P.N., Chupas, P.J., Armatas, G.S. and Kanatzidis, M.G. (2007) Porous Semiconducting Gels and Aerogels from Chalcogenide Clusters. Science, 317, 490-493.
https://doi.org/10.1126/science.1142535

[2]   Sun, H., Xu, Z. and Gao, C. (2013) Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels. Advanced Materials, 25, 2554-2560.
https://doi.org/10.1002/adma.201204576

[3]   Brock, S.L. (2007) Materials Science. Filling a Void. Science, 317, 460-461.
https://doi.org/10.1126/science.1146517

[4]   Venkatakrishnan, K., Vipparty, D. and Tan, B. (2011) Nanofibre Fabrication by Femtosecond Laser Ablation of Silica Glass. Optics Express, 19, 15770-15776.
https://doi.org/10.1364/OE.19.015770

[5]   Juodkazis, S., Misawa, H., Louchev, O.A. and Kitamura, K. (2006) Femtosecond Laser Ablation of Chalcogenide Glass: Explosive Formation of Nano-Fibres against Thermo-Capillary Growth of Micro-Spheres. Nanotechnology, 17, 4802-4805.
https://doi.org/10.1088/0957-4484/17/19/003

[6]   Zhang, Y.F., Tang, Y.H., Wang, N., Yu, D.P., Lee, C.S., Bello, I. and Lee, S.T. (1998) Silicon Nanowires Prepared by Laser Ablation at High Temperature. Applied Physics Letters, 72, 1835.
https://doi.org/10.1063/1.121199

[7]   Rode, A.V., Gamaly, E.G. and Luther-Davies, B. (2000) Formation of Cluster-Assembled Carbon Nano-Foam by High-Repetition-Rate Laser Ablation. Applied Physics A: Materials Science & Processing, 70, 135-144.
https://doi.org/10.1007/s003390050025

[8]   Feit, M.D., Komashko, A.M. and Rubenchik, A.M. (2004) Ultra-Short Pulse Laser Interaction with Transparent Dielectrics. Applied Physics A, 79, 1657-1661.
https://doi.org/10.1007/s00339-004-2683-1

[9]   Kaiser, A., Rethfeld, B., Vicanek, M. and Simon, G. (2000) Microscopic Processes in Dielectrics under Irradiation by Subpicosecond Laser Pulses. Physical Review B, 61, 11437-11450.
https://doi.org/10.1103/PhysRevB.61.11437

[10]   Brodeur, A. and Chin, S. (1998) Band-Gap Dependence of the Ultrafast White-Light Continuum. Physical Review Letters, 80, 4406-4409.
https://doi.org/10.1103/PhysRevLett.80.4406

[11]   Kasaai, M.R., Kacham, V., Theberge, F. and Chin, S.L. (2003) The Interaction of Femtosecond and Nanosecond Laser Pulses with the Surface of Glass. Journal of Non-Crystalline Solids, 319, 129-135.
https://doi.org/10.1016/S0022-3093(02)01909-9

[12]   Tamaki, T., Watanabe, W. and Itoh, K. (2006) Laser Micro-Welding of Transparent Materials by a Localized Heat Accumulation Effect Using a Femtosecond Fiber Laser at 1558 nm. Optics Express, 14, 10460-10468.
https://doi.org/10.1364/OE.14.010460

[13]   Koubassov, V., Laprise, J.F., Théberge, F., Chin, S.L., Forster, E., Sauerbrey, R., Müller, B. and Glatzel, U. (2004) Ultrafast Laser-Induced Melting of Glass. Applied Physics A: Materials Science & Processing, 79, 499-505.
https://doi.org/10.1007/s00339-003-2474-0

[14]   Tokarev, V.N., Lazare, S., Belin, C. and Debarre, D. (2004) Viscous Flow and Ablation Pressure Phenomena in Nanosecond UV Laser Irradiation of Polymers. Applied Physics A, 79, 717-720.
https://doi.org/10.1007/s00339-004-2693-z

[15]   Korte, F., Koch, J. and Chichkov, B.N. (2004) Formation of Microbumps and Nanojets on Gold Targets by Femtosecond Laser Pulses. Applied Physics A, 79, 879-881.
https://doi.org/10.1007/s00339-004-2590-5

[16]   Ben-Yakar, A., Byer, R.L., Harkin, A., Ashmore, J., Stone, H.A., Shen, M. and Mazur, E. (2003) Morphology of Femtosecond-Laser-Ablated Borosilicate Glass Surfaces. Applied Physics Letters, 83, 3030-3032.
https://doi.org/10.1063/1.1619560

[17]   Courtier, A.F., Grant-Jacob, J.A., Ismaeel, R., Heath, D.J., Bram-billa, G., Stewart, W.J., Eason, R.W. and Mills, B. (2017) Laser-Based Fabrication of Nanofoam inside a Hollow Capillary. Materials Sciences and Applications, 8, 829-837.

[18]   Grant-Jacob, J.A., Mills, B. and Eason, R.W. (2014) Parametric Study of the Rapid Fabrication of Glass Nanofoam via Femtosecond Laser Irradiation. Journal of Physics D: Applied Physics, 47, Article ID: 055105.
https://doi.org/10.1088/0022-3727/47/5/055105

[19]   Tong, L., Gattass, R.R., Ashcom, J.B., He, S., Lou, J., Shen, M., Maxwell, I. and Mazur, E. (2003) Subwavelength-Diameter Silica Wires for Low-Loss Optical Wave Guiding. Nature, 426, 816-819.
https://doi.org/10.1038/nature02193

[20]   Brambilla, G. (2010) Optical Fibre Nanowires and Microwires: A Review. Journal of Optics, 12, Article ID: 043001.
https://doi.org/10.1088/2040-8978/12/4/043001

[21]   Liu, Z.Q., Zhou, W.Y., Sun, L.F., Tang, D.S., Zou, X.P., Li, Y.B., Wang, C.Y., Wang, G. and Xie, S.S. (2001) Growth of Amorphous Silicon Nanowires. Chemical Physics Letters, 341, 523-528.
https://doi.org/10.1016/S0009-2614(01)00513-9

[22]   Huang, Z.-M., Zhang, Y.-Z., Kotaki, M. and Ramakrishna, S. (2003) A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Composites Science and Technology, 63, 2223-2253.
https://doi.org/10.1016/S0266-3538(03)00178-7

[23]   Sivakumar, M., Venkatakrishnan, K. and Tan, B. (2009) Synthesis of Glass Nanofibers Using Femtosecond Laser Radiation under Ambient Condition. Nanoscale Research Letters, 4, 1263-1266.
https://doi.org/10.1007/s11671-009-9390-y

[24]   Reed, G.T., Mashanovich, G., Gardes, F.Y. and Thomson, D.J. (2010) Silicon Optical Modulators. Nature Photonics, 4, 518-526.
https://doi.org/10.1038/nphoton.2010.179

[25]   Ikushima, A.J., Fujiwara, T. and Saito, K. (2000) Silica Glass: A Material for Photonics. Journal of Applied Physics, 88, 1201-1213.
https://doi.org/10.1063/1.373805

[26]   Schweizer, T., Brady, D.J. and Hewak, D.W. (1997) Fabrication and Spectroscopy of Erbium Doped Gallium Lanthanum Sulphide Glass Fibres for Mid-Infrared Laser Applications. Optics Express, 1, 102-107.
https://doi.org/10.1364/OE.1.000102

[27]   Abernethy, J.A., Gawith, C.B.E., Eason, R.W. and Smith, P.G.R. (2002) Demonstration and Optical Characteristics of Electro-Optic Bragg Modulators in Periodically Poled Lithium Niobate in the Near-Infrared. Applied Physics Letters, 81, 2514- 2516.
https://doi.org/10.1063/1.1510964

[28]   Weis, R.S. and Gaylord, T.K. (1985) Lithium Niobate: Summary of Physical Properties and Crystal Structure. Applied Physics A, 37, 191-203.
https://doi.org/10.1007/BF00614817

[29]   Cystran (2018) Silicon.
https://www.crystran.co.uk/optical-materials/silicon-si

[30]   Cystran (2018) Gallium Lanthanum Sul-phide.
https://www.crystran.co.uk/optical-materials/gallium-lanthanum-sulphide-gls

[31]   Ashby, M.F. (2013) Chapter 15 Material Profiles. In: Ashby, M.F., Ed., Materials and the Environment, Second Edition, Butterworth-Heinemann, Boston, 459-595.

[32]   Gooch & Housego (2018) Lithium Niobate Wafers.
https://goochandhousego.com/product-categories/ln-wafers/

[33]   Mills, B., Heath, D.J., Grant-Jacob, J.A. and Eason, R.W. (2018) Predictive Capabilities for Laser Machining via a Neural Network. Optics Express, 26, 17245-17253.
https://doi.org/10.1364/OE.26.017245

 
 
Top