JBNB  Vol.2 No.5 , December 2011
A Novel Targeting Drug Delivery System Based on Self-Assembled Peptide Hydrogel
Abstract: In the last two decades, 5-fluorouracil (5-FU) is widely used in clinical practice to inhibit the fibroblasts to proliferate and improve the success rate of glaucoma-filtering surgery, but 5-FU has many toxic effects to normal ocular tissues. The self-assembled peptide hydrogels may serve as a new class of biomaterials for applications including tissue engineering and drug delivery. How to deliver 5-FU quickly and precisely to the target sites of ocular tissue by a self-assembled peptide hydrogel remains unexplored. RGD (arginine-glycine-aspartic acid) sequence is cell attachment site in extracellular matrix (ECM). Thus, If the self-assembled peptide hydrogel containing the RGD sequence that act as a specific attachment site for the proliferated fibroblasts adhesion could be designed, after integrated 5-FU, a novel targeting drug delivery system will be put into practice in the future.
Cite this paper: nullLiang, L. , Yang, J. , Li, Q. , Huo, M. , Jiang, F. , Xu, X. and Zhang, X. (2011) A Novel Targeting Drug Delivery System Based on Self-Assembled Peptide Hydrogel. Journal of Biomaterials and Nanobiotechnology, 2, 622-625. doi: 10.4236/jbnb.2011.225074.

[1]   P. J. Lama and R. D. Fechtner, “Antifibrotics and Wound Healing in Glaucoma Surgery,” Survey of Ophthalmology, Vol. 48, No. 3, 2003, pp. 314-346. doi:10.1016/S0039-6257(03)00038-9

[2]   D. K. Heuer, R. K. Parrish 2nd, M. G. Gressel, E. Hodapp, P. F. Palmberg and D. R. Anderson, “5-Fluorouracil and Glaucoma Filtering Surgery. I. A Pilot Study,” Ophthalmology, Vol. 91, No. 4, 1984, pp. 384-394.

[3]   G. L. Skuta, C. C. Beeson, E. J. Higginbotham, P. R. Lichter, D. C. Musch, T. J. Bergstrom, T. B. Klein and F. Y. Falck Jr., “Intraoperative Mitomycin versus Postoperative 5-Fluorouracil in High-Risk Glaucoma Filtering Surgery,” Ophthalmology, Vol. 99, 1992, pp. 438-444.

[4]   C. Akarsu, M. Onol and B. Hasanreisoglu, “Postoperative 5-Fluorouracil versus Intraoperative Mitomycin c in High-Risk Glaucoma Filtering Surgery: Extended Follow up,” Clinical & Experimental Ophthalmology, Vol. 31, No. 3, 2003, pp. 199-205. doi:10.1046/j.1442-9071.2003.00645.x

[5]   G. A. Silva, C. Czeisler, K. L. Niece, E. Beniash, D. A. Harrington, J. A. Kessler and S. I. Stupp, “Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers,” Science, Vol. 303, No. 5662, 2004, pp. 1352-1355. doi:10.1126/science.1093783

[6]   S. Zhang, “Emerging Biological Materials through Molecular Self-Assembly,” Biotechnology Advances, Vol. 20, No. 5-6, 2002, pp. 321-339. doi:10.1016/S0734-9750(02)00026-5

[7]   S. Zhang, “Fabrication of Novel Biomaterials through Molecular Self-Assembly,” Nature Biotechnology, Vol. 21, 2003, pp. 1171-1178. doi:10.1038/nbt874

[8]   C. Keyes-Baig, J. Duhamel, S. Y. Fung, J. Bezaire and P. Chen, “Self-Assembling Peptide as a Potential Carrier of Hydrophobic Compounds,” Journal of the American Chemical Society, Vol. 126, No. 24, 2004, pp. 7522-7532. doi:10.1021/ja0381297

[9]   Z. Yang, G. Liang, M. Ma, A. S. Abbah, W. W. Lu and B. Xu, “D-Glucosamine-Based Supramolecular Hydrogels to Improve Wound Healing,” Chemical Communications, No. 8, 2007, pp. 843-845. doi:10.1039/b616563j

[10]   P. K. Vemula, G. A. Cruikshank, J. M. Karp and G. John, “Self-Assembled Prodrugs: An Enzymatically Triggered Drug-Delivery Platform,” Biomaterials, Vol. 30, No. 3, 2009, pp. 383-393. doi:10.1016/j.biomaterials.2008.09.045

[11]   M. D. Pierschbacher and E. Ruoslahti, “Cell Attachment Activity of Fibronectin Can Be Duplicated by Small Synthetic Fragments of the Molecule,” Nature, Vol. 309, 1984, pp. 30-33. doi:10.1038/309030a0

[12]   R. O. Hynes, “A Reevaluation of Integrins as Regulators of Angiogenesis,” Nature Medicine, Vol. 8, 2002, pp. 918-921. doi:10.1038/nm0902-918

[13]   R. O. Hynes and Q. Zhao, “The Evolution of Cell Adhesion,” Journal of Cell Biology, Vol. 150, No. 2, 2000, pp. F89-96. doi:10.1083/jcb.150.2.F89

[14]   E. Ruoslahti, “Fibronectin and Its Integrin Receptors in Cancer,” Advance in Cancer Research, Vol. 76, 1999, pp. 1-20. doi:10.1016/S0065-230X(08)60772-1

[15]   S. Kiyonaka, K. Sugiyasu, S. Shinkai and I. Hamachi, “First Thermally Responsive Supramolecular Polymer Based on Glycosylated Amino Acid,” Journal of the American Chemistry Society, Vol. 124, No. 37, 2002, pp. 10954-10955. doi:10.1021/ja027277e

[16]   P. Terech and R. G. Weiss, “Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels,” Chemical Reviews, Vol. 97, No. 8, 1997, pp. 3133-3160. doi:10.1021/cr9700282

[17]   K. Y. Lee and D. J. Mooney, “Hydrogels for Tissue Engineering,” Chemical Reviews, Vol. 101, No. 7, 2001, pp. 1869-1879. doi:10.1021/cr000108x

[18]   G. Szulgit, R. Rudolph, A. Wandel, M. Tenenhaus, R. Panos and H. Gardner, “Alterations in Fibroblast Alpha1beta1 Integrin Collagen Receptor Expression in Keloids and Hypertrophic Scars,” Journal of Investigative Dermatology, Vol. 118, 2002, pp. 409-415. doi:10.1046/j.0022-202x.2001.01680.x

[19]   K. Podual, F. J. Doyle III and N. A. Peppas, “Glucose-Sensitivity of Glucose Oxidase-Containing Cationic Copolymer Hydrogels Having Poly(Ethylene Glycol) Grafts,” Journal of Investigative Dermatology, Vol. 67, No. 1, 2000, pp. 9-17. doi:10.1016/S0168-3659(00)00195-4

[20]   P. Gupta, K. Vermani and S. Garg, “Hydrogels: From Controlled Release to Ph-Responsive Drug Delivery,” Drug Discovery Today, Vol. 7, No. 10, 2002, pp. 569-579. doi:10.1016/S1359-6446(02)02255-9

[21]   T. Miyata, T. Uragami and K. Nakamae, “Biomolecule- Sensitive Hydrogels,” Advanced Drug Delivery Reviews, Vol. 54, No. 1, 2002, pp. 79-98. doi:10.1016/S0169-409X(01)00241-1