The Effect of Relaxation Time on the Heat Transfer and Temperature Distribution in Tissues

References

[1] R. Seip and E. S. Ebbini, “Studies on the Three-Dimen- sional Temperature Response to Heating Fields Using Diagnostic Ultrasound,” IEEE Transactions on Biomedi- cal Engineering, Vol. 42, No. 8, 1995, pp. 828-839.
doi:10.1109/10.398644

[2] A. M. Stoll, “Thermal-Properties of Human-Skin Related to Nondestructive Measurement of Epidermal Thickness,” Journal of Investigative Dermatology, Vol. 69, 1977, pp. 328-332. doi:10.1111/1523-1747.ep12507865

[3] A. M. Stoll and M. A. Chianta, J. R. Piergallini, “Thermal Conduction Effects in Human-Skin,” Aviation, Space, and Environmental Medicine, Vol. 50, 1979, pp. 778-787.

[4] C. J. Diederich and K. Hynynen, “Ultrasound Technology for Hyperthermia,” Ultrasound in Medicine and Biology, Vol. 25, No. 6, 1999, pp. 871-887.
doi:10.1016/S0301-5629(99)00048-4

[5] H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids,” 2nd Edition, Oxford University Press, Oxford, 1959.

[6] J. H. Lienhard, “A Heat Transfer Textbook,” Prentice- Hall, Englewood Cliffs, 1987.

[7] P. J. Riu, K. R. Foster, D. W. Blick and E. R. Adair, “A Thermal Model for Human Thresholds of Microwave- evoked Warmth Sensations,” Bioelectromagnetics, Vol. 18, No. 8, 1997, pp. 578-583.
doi:10.1002/(SICI)1521-186X(1997)18:8<578::AID-BEM6>3.0.CO;2-#

[8] H. F. Bowman, E. G. Cravalho and M. Woods, “Theory, Measurement, and Application of Thermal Properties of Biomaterials,” Annual Review of Biophysics and Bioen- gineering, Vol. 4, 1975, pp. 43-80.
doi:10.1146/annurev.bb.04.060175.000355

[9] G. T. Martin, H. F. Bowman and W. H. Newman, “Basic Element Method for Computing the Temperature Field during Hyperthermia Therapy Planning,” Advanced Bio Heat Mass Transfer, Vol. 231, 1992, pp. 75-80.

[10] C. R. Davies, G. M. Saidel and H. Harasaki, “Sensitivity Analysis of One-Dimensional Heat Transfer in Tissue with Temperature-Dependent Perfusion,” Journal of Biome- chanical Engineering, Vol. 119, No. 1, 1997, pp. 77-80.
doi:10.1115/1.2796068

[11] H. Arkin and K. R. Holmes, “Recent Developments in Modeling Heat Transfer in Blood Perfused Tissues,” IEEE Transactions on Biomedical Engineering, Vol. 41, No. 2, 1994, pp. 97-107. doi:10.1109/10.284920

[12] B. Erdmann, J. Lang and M. Seebass, “Optimization of Temperature Distributions for Regional Hyperthermia Based on a Nonlinear Heat Transfer Model,” Annals of the New York Academy of Sciences, Vol. 858, No. 1, 1998, pp. 36-46. doi:10.1111/j.1749-6632.1998.tb10138.x

[13] P. D. Yréus and J. Diederich, “Theoretical Model of In- ternally Cooled Interstitial Ultrasound Applicators for Thermal Therapy,” Physics in Medicine & Biology, Vol. 47, No. 7, 2002, pp. 1073-1089.
doi:10.1088/0031-9155/47/7/306

[14] K. R. Diller, “Development and Solution of Finite-dif- ference Equations for Burn Injury with Spreadsheet Soft- ware”, The Journal of Burn Care & Rehabilitation, Vol. 20, No. 1, 1999, pp. 25-32.

[15] K. R. Diller, “Modeling Thermal Skin Burns on a Per- sonal Computer,” The Journal of Burn Care & Rehabili- ntation, Vol. 19, No. 5, 1998, pp. 420-429.
doi:10.1097/00004630-199809000-00012

[16] S. C. Jiang, N. Ma, H. J. Li and X. Zhang, “Effects of Thermal Properties and Geometrical Dimensions on Skin Burn Injuries,” Burns, Vol. 28, No. 8, 2002, pp. 713-717. doi:10.1016/S0305-4179(02)00104-3

[17] C. L. Chan, “Boundary Element Method Analysis for the Bioheat Transfer Equation” Journal of Biomechanical En- gineering, Vol. 114, No. 3, 1992, pp. 358-365.
doi:10.1115/1.2891396

[18] B. Mochnacki and E. Majchrzak, “Sensitivity of the Skin Tissue on the Activity of External Heat Sources,” Com- puter Modeling in Engineering & Sciences, Vol. 4, No. 4, 2003, pp. 431-438.

[19] M. I. A. Othman, “Effect of Rotation in Case of 2-D Pro- blems of Generalized Thermoelasticity with Thermal Re- laxation,” Mechanics & Mechanical Engineering, Vol. 8, No. 2, 2005, pp. 111-126.

[20] M. I. A. Othman, “Effect of Rotation on Plane Waves in Generalized Thermo-Elasticity with Two Relaxation Times,” International Journal of Solids and Structures, Vol. 41, No. 11-12, 2004, pp. 2939-2956.
doi:10.1016/j.ijsolstr.2004.01.009

[21] M. I. A. Othman, “Lord-Shulman Theory under the De- pendence of the Modulus of Elasticity on the Reference Temperature in Two-dimensional Generalized Thermo-elas- ticity,” Journal of Thermal Sresses, Vol. 25, No. 11, 2002, pp. 1027-1045. doi:10.1080/01495730290074621

[22] J. N. Sharma, R. Chand and M. I. A. Othman, “On the Propagation of Lamb Waves in Visco-Thermoelastic Plates under Fluid Loadings,” International Journal of Engineer- ing Science, Vol. 47, No. 3, 2009, pp. 391-404.
doi:10.1016/j.ijengsci.2008.10.008

[23] M. I. A. Othman and R. Kumar, “Reflection of Magneto- Thermoelastic Waves with Temperature Dependent Prop- erties in Generalized Thermoelasticity,” International Com- munications in Heat and Mass Transfer, Vol. 36, No. 5, 2009, pp. 513-520.
doi:10.1016/j.icheatmasstransfer.2009.02.002

[24] M. I. A. Othman and B. Singh, “The Effect of Rotation on Generalized Micropolar Thermoelasticity for a Half- space under Five Theories”, International Journal of Sol- ids and Structures, Vol. 44, No. 9, 2007, pp. 2748-2762.
doi:10.1016/j.ijsolstr.2006.08.016

[25] M. I. A. Othman, Kh. Lotfy and R. M. Farouk, “General- ized Thermo-Microstretch Elastic Medium with Tempe- rature Dependent Properties for Different Theories,” En- gineering Analysis with Boundary Elements, Vol. 34, No. 3, 2010, pp. 229-237.
doi:10.1016/j.enganabound.2009.10.003

[26] M. I. A. Othman, “Electrohydrodynamic Stability in a Ho- rizontal Viscoelastic Fluid Layer in the Presence of a Ver- tical Temperature Gradient,” International Journal of En- gineering Science, Vol. 39, No. 11, 2001, pp. 1217-1232.
doi:10.1016/S0020-7225(00)00092-6

[27] H. Pauly and H. P. Schwan, “Mechanism of Absorption of Ultrasound in Liver Tissue,” Journal of the Acoustical Society of America, Vol. 50, No. 2B, 1971, pp. 692-698.
doi:10.1121/1.1912685